Citation: | YANG Baoju, ZENG Zhigang, WANG Xiaoyuan, YIN Xuebo, CHEN Shuai. Pourbaix diagrams to decipher precipitation conditions of Si-Fe- Mn-oxyhydroxides at the PACMANUS hydrothermal field[J]. Acta Oceanologica Sinica, 2014, 33(12): 58-66. doi: 10.1007/s13131-014-0572-9 |
Alt J C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar Geol, 81(1-4): 227-239
|
Benjamin S B, Haymon R M. 2006. Hydrothermal mineral deposits and fossil biota from a young (0. 1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochemistry Geophysics Geosystems, 7(5): Q05002
|
Beverskog B, Puigdomenech I. 1996. Revised Pourbaix diagrams for iron at 25-300℃. Corros Sci, 38(12): 2121-2135
|
Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ Geol, 88(8): 2226-2236
|
Binns R A, Scott S D, Bogdanov Y A, et al. 1993. Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Econ Geol, 88(8): 2122-2153
|
Binns R A, Barriga F J A S, Miller D J. 2007. 1. Leg 193 Synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. Proceedings of the Ocean Drilling Program, Scientific Results, 193: 1-71
|
Bogdanov Y A, Lisitzin A P, Binns R A, et al. 1997. Low-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea. Mar Geol, 142(1-4): 99-117
|
Bonatti E, Beyth M, Rydell H S, et al. 1972. Iron-manganese-barium deposit from the northern Afar Rift (Ethiopia). Econ Geol, 67(6): 717-730
|
Boyd T D, Scott S D. 2001. Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem T, 2(1): 45-56
|
Cooper L H N. 1937. Oxidation-reduction potential in sea water. J Mar Biol Assoc UK, 22(1): 167-176
|
Dekov V M, Petersen S, Garbe-Schonberg C D, et al. 2010. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9°33'S, Mid-Atlantic Ridge). Chem Geol, 278(3-4): 186-200
|
Edwards K J, Glazer B, Rouxel O J, et al. 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. The ISME Journal, 5(11): 1748- 1758
|
Edwards K J, Rogers D R, Wirsen C O, et al. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α-and γ-Proteobacteria from the deep sea. Appl Environ Microb, 69(5): 2906-2913
|
Emerson D, Moyer C L. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microb, 68(6): 3085-3093
|
Emerson D, Rentz J A, Lilburn T G, et al. 2007. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. Plos One, 2(8): e667
|
Fortin D, Langley S. 2005. Formation and occurrence of biogenic ironrich minerals. Earth-Sci Rev, 72(1-2): 1-19
|
Fourre E, Jean-Baptiste P, Charlou J L, et al. 2006. Helium isotopic composition of hydrothermal fluids from the Manus back-arc Basin, Papua New Guinea. Geochem J, 40(3): 245-252
|
Halbach P D P. 1986. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geologische Rundschau, 75(1): 235-247
|
Hein J R, Hsueh-Wen Y, Gunn S H, et al. 1994. Composition and origin of hydrothermal ironstones from central Pacific seamounts. Geochim Cosmochim Ac, 58(1): 179-189
|
Hein J R, Koschinsky A, Halbach P, et al. 1997. Iron and manganese oxide mineralization in the Pacific. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, 119(16): 123-138
|
Hein J R, Schulz M S, Dunham R E, et al. 2008. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J Geophys Res, 113(B8): B08S14
|
Hekinian R, Hoffert M, Larque P, et al. 1993. Hydrothermal Fe and Si oxyhydroxide deposits from south Pacific intraplate volcanoes and east Pacific rise axial and offaxial regions. Economic Geology and the Bulletin of the Society of Economic Geologists, 88: 2099-2121
|
Hrischeva E, Scott S D. 2007. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim Cosmochim Ac, 71(14): 3476-3497
|
Iizasa K, Kawasaki K, Maeda K, et al. 1998. Hydrothermal sulfidebearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacific. Mar Geol, 145(1-2): 1-21
|
Karl D M, Brittain A M, Tilbrook B D. 1989. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Research Part A: Oceanographic Research Papers, 36(11): 1655-1673
|
Kennedy C B, Scott S D, Ferris F G. 2003. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, northeast Pacific Ocean. Geomicrobiol J, 20(3): 199-214
|
Kim E, Osseo-Asare K. 2012. Dissolution windows for hydrometallurgical purification of metallurgical-grade silicon to solar-grade silicon: Eh-pH diagrams for Fe silicides. Hydrometallurgy, 127-128: 178-186
|
Lin Chuanxian, Bai Zhenghua, Zhang Zheru. 1985. Thermodynamic Data Handbook of Minerals and Related Compounds (in Chinese). Beijing: Science Press, 17 Little C T S, Glynn S E J, Mills R A. 2004. Four-hundred-and-ninetymillion-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol J, 21(6): 415-429
|
Martinez F, Taylor B. 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18(2-4): 203-224
|
Ponnamperuma F N, Loy T A, Tianco E M. 1969. Redox equilibria in flooded soils: II. The manganese oxide systems. Soil Sci, 108(1): 48-57
|
Ponnamperuma F N, Tianco E M, Loy T. 1967. Redox equilibria in flooded soils: I. The iron hydroxide systems. Soil Sci, 103(6): 374-382
|
Reeves E P, Seewald J S, Saccocia P, et al. 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Ac, 75(4): 1088-1123
|
Rimstidt J D, Cole D R. 1983. Geothermal mineralization: I. The mechanism of formation of the Beowawe, Nevada, siliceous sinter deposit. Am J Sci, 283(8): 861-875
|
Sadiq M, Lindsay W L. 1979. Selection of standard free energies of formation for use in soil chemistry. Technical Bulletin/Colorado State University, Experiment Station, 134: 1-24
|
Schwab A P, Lindsay W L. 1983. Effect of redox on the solubility and availability of iron. Soil Sci Soc Am J, 47: 201-205
|
Silver G L. 1991. Environmental plutonium: What is the redox potential of seawater? J Radioanal Nucl Ch, 155(3): 177-181
|
Sinton J M, Ford L L, Chappell B, et al. 2003. Magma genesis and mantle heterogeneity in the Manus Back-Arc Basin, Papua New Guinea. J Petrol, 44(1): 159-195
|
Sun Zhilei, Zhou Huaiyang, Glasby G P, et al. 2012. Formation of Fe- Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. J Asian Earth Sci, 43(1): 64-76
|
Takahashi Y, Manceau A, Geoffroy N, et al. 2007. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim Cosmochim Ac, 71(4): 984-1008
|
Taylor B. 1979. Bismarck Sea: Evolution of a back-arc basin. Geology, 7(4): 171-174
|
Tregoning P. 2002. Plate kinematics in the western Pacific derived from geodetic observations. Journal of Geophysical Research: Solid Earth, 107(B1): ECV 7-1-ECV 7-8
|
Wang Yuan, Chai Ruitao, Li Nan, et al. 2009. Synthesis of birnessite. Journal of Jilin University (Science Edition) (in Chinese), 47(3): 614-617
|
White D E, Brannock W W, Murata K J. 1956. Silica in hot-spring waters. Geochim Cosmochim Ac, 10(1-2): 27-59
|
Zeng Zhigang, Ouyang Hegen, Yin Xuebo, et al. 2012. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence. J Asian Earth Sci, 60: 130-146
|
1. | Danian Liu, Yeqiang Shu, Dongxiao Wang, et al. Effect of western Pacific current uncertainties on the forecasting of eddy shedding from the Kuroshio loop into the South China Sea: A case study. Ocean Modelling, 2023. doi:10.1016/j.ocemod.2023.102234 | |
2. | Lingjing Xu, Dezhou Yang, Xingru Feng, et al. Influence of mesoscale eddies on the cross-shelf phosphate transport of the Kuroshio Current northeast of Taiwan: A modeling study. Frontiers in Marine Science, 2023, 9 doi:10.3389/fmars.2022.1079418 | |
3. | K. Tan, L. Xie, P. Bai, et al. Modulation Effects of Mesoscale Eddies on Sea Surface Wave Fields in the South China Sea Derived From a Wave Spectrometer Onboard the China‐France Ocean Satellite. Journal of Geophysical Research: Oceans, 2023, 128(1) doi:10.1029/2021JC018088 | |
4. | Zhongjie He, Xiachuan Fu, Yueqi Zhao, et al. Multiscale Energy Transfers and Conversions of Kuroshio in Luzon Strait and Its Adjacent Regions. Journal of Marine Science and Engineering, 2022, 10(7): 975. doi:10.3390/jmse10070975 | |
5. | Zhanjiu Hao, Zhenhua Xu, Ming Feng, et al. Dynamics of Interannual Eddy Kinetic Energy Variability in the Sulawesi Sea Revealed by OFAM3. Journal of Geophysical Research: Oceans, 2022, 127(8) doi:10.1029/2022JC018815 | |
6. | Jia-Yi Lin, Zhe-Wen Zheng, Quanan Zheng, et al. Satellite observed new mechanism of Kuroshio intrusion into the northern South China Sea. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103119. doi:10.1016/j.jag.2022.103119 | |
7. | Yifei Jiang, Jihai Dong, Xiaojiang Zhang, et al. Evaluating the effects of a symmetric instability parameterization scheme in the Xisha-Zhongsha waters, South China Sea in winter. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.985605 | |
8. | Yu-Hao Tseng, Ching-Yuan Lu, Quanan Zheng, et al. Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations. Remote Sensing, 2021, 13(15): 3025. doi:10.3390/rs13153025 | |
9. | Qiang Li, Lei Zhou, Lingling Xie. Seasonal and Interannual Variability of EAPE in the South China Sea Derived from ECCO2 Data from 1997 to 2019. Water, 2021, 13(7): 926. doi:10.3390/w13070926 | |
10. | Xiangpeng Wang, Yan Du, Yuhong Zhang, et al. Influence of Two Eddy Pairs on High‐Salinity Water Intrusion in the Northern South China Sea During Fall‐Winter 2015/2016. Journal of Geophysical Research: Oceans, 2021, 126(6) doi:10.1029/2020JC016733 | |
11. | Runqi Huang, Lingling Xie, Quanan Zheng, et al. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin. Acta Oceanologica Sinica, 2020, 39(11): 91. doi:10.1007/s13131-020-1678-x | |
12. | Zhongbin Sun, Zhiwei Zhang, Bo Qiu, et al. Three-Dimensional Structure and Interannual Variability of the Kuroshio Loop Current in the Northeastern South China Sea. Journal of Physical Oceanography, 2020, 50(9): 2437. doi:10.1175/JPO-D-20-0058.1 | |
13. | Hongyang Lin, Zhenyu Sun, Zhaozhang Chen, et al. Wintertime Guangdong coastal currents successfully captured by cheap GPS drifters. Acta Oceanologica Sinica, 2020, 39(1): 166. doi:10.1007/s13131-019-1425-3 | |
14. | Zhehao Zheng, Wei Zhuang, Jianyu Hu, et al. Surface water exchanges in the Luzon Strait as inferred from Lagrangian coherent structures. Acta Oceanologica Sinica, 2020, 39(11): 21. doi:10.1007/s13131-020-1677-y | |
15. | Baiyang Chen, Lingling Xie, Quanan Zheng, et al. Seasonal variability of mesoscale eddies in the Banda Sea inferred from altimeter data. Acta Oceanologica Sinica, 2020, 39(12): 11. doi:10.1007/s13131-020-1665-2 | |
16. | Quanan Zheng, Lingling Xie, Xuejun Xiong, et al. Progress in research of submesoscale processes in the South China Sea. Acta Oceanologica Sinica, 2020, 39(1): 1. doi:10.1007/s13131-019-1521-4 |