Li Tao, Wang Peng. Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(10): 85-93. doi: 10.1007/s13131-014-0543-1
Citation: Li Tao, Wang Peng. Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(10): 85-93. doi: 10.1007/s13131-014-0543-1

Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea

doi: 10.1007/s13131-014-0543-1
  • Received Date: 2014-06-06
  • Rev Recd Date: 2013-10-01
  • A sediment core MD05-2902 was collected from the deep-sea basin of the Xisha Trough. The vertical distribution and diversity of bacteria in the core was investigated through ten sub-sampling with an interval of 1 m using bacterial 16S rRNA gene as a phylogenetic bio-marker. Eighteen phylogenetic groups were identified from 16S rRNA gene clone libraries. The dominant bacterial groups were JS1, Planctomycetes and Chloroflexi, which accounted for 30.6%, 16.6%, and 15.6% of bacterial clones in the libraries, respectively. In order to reveal the relationship between biotic and abiotic data, a nonmetric multidimensional scaling analysis was performed. The result revealed that the δ15N, δ13C, total organic carbon and total organic nitrogen possibly influenced the bacterial community structure. This study expanded our knowledge of the biogeochemical cycling in the Xisha Trough sediment.
  • loading
  • Alain K, Holler T, Musat F, et al. 2006. Microbiological investigation of methane-and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol, 8(4): 574-590
    Batzke A, Engelen B, Sass H, et al. 2007. Phylogenetic and physiological diversity of cultured deep-biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J, 24(3-4): 261-273
    Blazejak A, Schippers A. 2010. High abundance of JS-1-and Chloroflexi-related bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol, 72(2): 198-207
    Boudreau B P. 1992. A kinetic model for microbic organic-matter decomposition in marine sediments. FEMS Microbiol Ecol, 102(1): 1-14
    Briggs B R, Inagaki F, Morono Y, et al. 2012. Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiol Ecol, 81(1): 88-98
    Chao Anne, Shen Tsung-Jen. 2003. Program SPADE (Species Prediction and Diversity Estimation). http://chao.stat.nthu.edu.tw Clarke K R, Ainsworth M. 1993. A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser, 92: 205-219
    D’Hondt S, Jørgensen B B, Miller D J, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306(5705): 2216-2221
    D’Hondt S, Inagaki F, Ferdelman T, et al. 2007. Exploring subseafloor life with the Integrated Ocean Drilling Program. Scientific Drilling, 5: 26-37
    DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA, 89(12): 5685-5689
    Dhillon A, Teske A, Dillon J, et al. 2003. Molecular characterization of Sulfate-Reducing Bacteria in the Guaymas Basin. Appl Environ Microbiol, 69(5): 2765-2772
    Ena U, Vergin K L, Young L, et al. 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr, 46(3): 557-572
    Forschner S R, Sheffer R, Rowley D C, et al. 2009. Microbial diversity in cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin. Environ Microbiol, 11(3): 630-639
    Freitag T E, Prosser J I. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl Environ Microbiol, 69(3): 1359-1371
    Fry J C, Parkes R J, Cragg B A, et al. 2008. Prokaryotic biodiversityand activity in the deep subseafoor biosphere. FEMS Microbiol Ecol, 66(2): 181-196
    He Lijuan, Wang Jiyang, Xu Xing, et al. 2009. Disparity between measured and BSR heat flow in the Xisha Trough of the South China Sea and its implications for the methane hydrate. J Asian Earth Sci, 34(6): 771-780
    Heijs S K, Haese R R, Wielen P W J J, et al. 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean Cold Seep. Microb Ecol, 53(6): 384-398
    Hugenholt P, Stackebrand E. 2004. Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Micr, 54(6): 2049-2051
    Hugenholtz P, Pitulle C, Hershberger K L, et al. 1998. Novel division level bacterial diversity in a Yellowstone Hot Spring. J Bacteriol, 180(2): 366-376
    Inagaki F, Nunoura T, Nakagawa S, et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 103(8): 2815-2820
    Inagaki F, Suzuki M, Takai K, et al. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol, 69(12): 7224-7235
    Jorgensen S L, Hannisdal B, Lanzén A, et al. 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA, 109(42): E2846-E2855
    Kallmeyer J, Pockalny R, Adhikari R R, et al. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109(40): 16213-16216
    Kartal B, Rattray J, van Niftrik L A, et al. 2007. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 30: 39-49
    Kormas K A, Smith D C, Edgcomb V, et al. 2003. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol, 45(2): 115-125
    Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta, 66(20): 3573-3584
    Leventhal J S. 2004. Isotopic chemistry of organic carbon in sediments from Leg 184. In: Prell W L, Wang P X, Blum P, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 184, 1-13, doi:10.2973/ odp.proc.sr.184.215.2004
    Li Lina, Kato C, Horikoshi K. 1999. Microbial diversity in sediments collected from the deepest cold-seep Area, the Japan Trench. Mar Biotechnol, 1(4): 391-400
    Li Tao, Wang Peng, Wang Pinxian. 2008a. Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea. Acta Microbiologica Sinica (in Chinese), 48(3): 323-329
    Li Tao, Wang Peng, Wang Pinxian. 2008b. Microbial diversity in surface sediments of the Xisha Trough, the South China Sea. Acta Ecologica Sinica (in Chinese), 28(3): 1166-1173
    Lloyd K G, Lapham L, Teske A. 2006. An anaerobic methane-oxidizing community of ANME-1b Archaea in hypersaline gulf of Mexico sediments. Appl Environ Microbiol, 72(11): 7218-7230
    López-García P, Duperron S, Philippot P, et al. 2003. Bacterial diversity in hydrothermal sediment and epsilonProteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol, 5(10): 961-971
    Lösekann T, Knittel K, Nadalig T, et al. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol, 73(10): 3348-3362
    Maidak B L, Cole J R, Lilburn T G, et al. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res, 29(3): 173-174
    Marchesi J R, Weightman A J, Cragg B A, et al. 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol, 34(3): 221-228
    Maymó-Gatell X, Chien Y-t, Gossett J M, et al. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318): 1568-1571
    Neef A, Amann R, Schlesner H, et al. 1998. Monitoring a widespread bacterial group: in situ detection of Planctomycetes with 16S
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1481) PDF downloads(1490) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return