ZHU Yanbing, LI Hebin, NI Hui, LIU Jingwen, XIAO Anfeng, CAI Huinong. Purification and biochemical characterization of manganesecontaining superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3[J]. Acta Oceanologica Sinica, 2014, 33(12): 163-169. doi: 10.1007/s13131-014-0534-2
Citation: ZHU Yanbing, LI Hebin, NI Hui, LIU Jingwen, XIAO Anfeng, CAI Huinong. Purification and biochemical characterization of manganesecontaining superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3[J]. Acta Oceanologica Sinica, 2014, 33(12): 163-169. doi: 10.1007/s13131-014-0534-2

Purification and biochemical characterization of manganesecontaining superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3

doi: 10.1007/s13131-014-0534-2
  • Received Date: 2013-03-15
  • Rev Recd Date: 2013-09-13
  • Thermostable SOD is a promising enzyme in biotechnological applications. In the present study, thermophile Geobacillus sp. EPT3 was isolated from a deep-sea hydrothermal field in the East Pacific. A thermostable superoxide dismutase (SOD) from this strain was purified to homogeneity by steps of fractional ammonium sulfate precipitation, DEAE-Sepharose chromatography, and Phenyl-Sepharose chromatography. SOD was purified 13.4 fold to homogeneity with a specific activity of 3 354 U/mg and 11.1% recovery. SOD from Geobacillus sp. EPT3 was of the Mn-SOD type, judged by the insensitivity of the enzyme to both KCN and H2O2. SOD was determined to be a homodimer with monomeric molecular mass of 26.0 kDa. It had high thermostability at 50℃ and 60℃. At tested conditions, SOD was relatively stable in the presence of some inhibitors and denaturants, such as β-mercaptoethanol (β-ME), dithiothreitol (DTT), phenylmethylsulfonyl fluoride (PMSF), urea, and guanidine hydrochloride. Geobacillus sp. EPT3 SOD showed striking stability across a wide pH range from 5.0 to 11.0. It could withstand denaturants of extremely acidic and alkaline conditions, which makes it useful in the industrial applications.
  • loading
  • Altschul S F, Madden T L, Schäffer A A, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17): 3389-3402
    Amo T, Atomi H, Imanaka T. 2003. Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. J Bacteriol, 185(21): 6340-6347
    An S S, Kim Y M. 1997. Purification and characterization of a manganese-containing superoxide dismutase from a carboxydobacterium, Pseudomonas carboxydohydrogena. Mol Cells, 7(6): 730-737
    Angelova M, Dolashka-Angelova P, Ivanova E, et al. 2001. A novel glycosylated Cu/Zn-containing superoxide dismutase: production and potential therapeutic effect. Microbiology, 147(Pt6): 1641- 1650
    Asada K, Yoshikawa K, Takahashi M, et al. 1975. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem, 250(8): 2801-2807
    Bannister J V, Bannister W H, Rotilio G. 1987. Aspects of the structure, function and applications of superoxide dismutase. CRC Crit Rev Biochem, 22(2): 111-180
    Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44(1): 276-287
    Bostwick D G, Alexander E E, Singh R, et al. 2000. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer, 89(1): 123-134
    Boyadzhieva I P, Atanasova M, Emanuilova E. 2010. A novel, thermostable manganese-containing superoxide dismutase from Bacillus licheniformis. Biotechnol Lett, 32(12): 1893-1896
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2): 248-254
    Cullen J J, Weydert C, Hinkhouse M M, et al. 2003. The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res, 63(6): 1297-1303
    Dello Russo A, Rullo R, Nitti G, et al. 1997. Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: average hydrophobicity and amino acid weight are involved in the adaptation of proteins to extreme environments. Biochim Biophys Acta, 1343(1): 23-30
    Emerit J, Samuel D, Pavio N. 2006. Cu-Zn super oxide dismutase as a potential antifibrotic drug for hepatitis C related fibrosis. Biomed Pharmacother, 60(1): 1-4
    Fridovich I. 1975. Superoxide dismutases. Annu Rev Biochem, 44(1): 147-159
    Guo Fangxian, E Shijin, Liu Shouan, et al. 2008. Purification and characterization of a thermostable MnSOD from the thermophilic fungus Chaetomium thermophilum. Mycologia, 100(3): 375-380
    Hakamada Y, Koike K, Kobayashi T, et al. 1997. Purification and properties of mangano-superoxide dismutase from a strain of alkaliphilic Bacillus. Extremophiles, 1(2): 74-78
    Hassan H M. 1989. Microbial superoxide dismutases. Adv Genet, 26: 65-97
    He Yongzhi, Fan Keqiang, Jia Cuijuan, et al. 2007. Characterization of a hyperthermostable Fe-superoxide dismutase from hot spring. Appl Microbiol Biotechnol, 75(2): 367-376
    Kardinahl S, Anemüller S, Schäfer G. 2000. The hyper-thermostable Fesuperoxide dismutase from the archaeon Acidianus ambivalens: characterization, recombinant expression, crystallization and effects of metal exchange. Biol Chem, 381(11): 1089-1101
    Klenk H P, Schleper C, Schwass V, et al. 1993. Nucleotide sequence, transcription and phylogeny of the gene encoding the superoxide dismutase of Sulfolobus acidocaldarius. Biochim Biophys Acta, 1174(1): 95-98
    Knapp S, Kardinahl S, Hellgren N, et al. 1999. Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius at 2.2 Å resolution. J Mol Biol, 285(2): 689-702
    Laemmli U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680-685
    Lancaster V L, LoBrutto R, Selvaraj F M, et al. 2004. A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus. J Bacteriol, 186(11): 3408-3414
    Lee H J, Kwon H W, Koh J U, et al. 2010. An efficient method for the expression and reconstitution of thermostable Mn/Fe superoxide dismutase from Aeropyrum pernix K1. J Microbiol Biotechnol, 20(4): 727-731
    Li Duochuan, Gao Jing, Li Yaling, et al. 2005. A thermostable manganese-containing superoxide dismutase from the thermophilic fungus Thermomyces lanuginosus. Extremophiles, 9(1): 1-6
    Lim J H, Yu Y G, Choi I G, et al. 1997. Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium. FEBS Lett, 406(1-2): 142-146
    Liu Bin, Wang Yiqian, Zhang Xiaobo. 2006. Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb Tech, 39(4): 805-810
    Liu Jianguo, Yin Mengmeng, Zhu Hu, et al. 2011. Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles, 15(2): 221- 226
    Luisa Corvo M, Jorge J C, van't Hof R, et al. 2002. Superoxide dismutase entrapped in long-circulating liposomes: formulation design and therapeutic activity in rat adjuvant arthritis. Biochim Biophys Acta, 1564(1): 227-236
    Melov S, Ravenscroft J, Malik S, et al. 2000. Extension of life-span with superoxide dismutase/catalase mimetics. Science, 289(5484): 1567-1569
    McCord J M. 1976. Iron-and manganese-containing superoxide dismutases: structure, distribution, and evolutionary relationships. Adv Exp Med Biol, 74: 540-550
    McCord J M, Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 244(22): 6049-6055
    McCord J M, Fridovich I. 1988. Superoxide dismutase: the first twenty years (1968-1988). Free Radic Biol Med, 5(5-6): 363-369
    Miroshnichenko M L, Bonch-Osmolovskaya E A. 2006. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles, 10(2): 85-96
    Nishikawa M, Nagatomi H, Nishijima M, et al. 2001. Targeting superoxide dismutase to renal proximal tubule cells inhibits nephrotoxicity of cisplatin and increases the survival of cancer-bearing mice. Cancer Lett, 171(2): 133-138
    Oppenheimer C H, ZoBell C E. 1952. The growth and viability of sixtythree species of marine bacteria as influenced by hydrostatic pressure. J Mar Res, 11: 10-18
    Parker M W, Blake C C. 1988. Iron-and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett, 229(2): 377-382
    Raimondi S, Uccelletti D, Matteuzzi D, et al. 2008. Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol, 77(6): 1269-1277
    Song Chongfu, Sheng Liangquan, Zhang Xiaobo. 2012. Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol, 96(1): 123-132
    Song Ningning, Zheng Yan, E Shijin, et al. 2009. Cloning, expression, and characterization of thermostable manganese superoxide dismutase from Thermoascus aurantiacus var. levisporus. J Microbiol, 47(1): 123-130
    Stewart R R C, Bewley J D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol, 65(2): 245-248
    Ursby T, Adinolfi B S, Al-Karadaghi S, et al. 1999. Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. J Mol Biol, 286(1): 189-205
    Valderas M W, Hart M E. 2001. Identification and characterization of a second superoxide dismutase gene (sodM) from Staphylococcus aureus. J Bacteriol, 183(11): 3399-3407
    Vieille C, Zeikus G J. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev, 65(1): 1-43
    Vorauer-Uhl K, Fürnschlief E, Wagner A, et al. 2001. Topically applied liposome encapsulated superoxide dismutase reduces postburn wound size and edema formation. Eur J Pharm Sci, 14(1): 63-67
    Wang Xin, Yang Haijie, Ruan Lingwei, et al. 2008. Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermus sp. XMH10. J Ind Microbiol Biotechnol, 35(2): 133-139
    Weisiger R A, Fridovich I. 1973. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem, 248(13): 4793-4796
    Whittaker M M, Whittaker J W. 2000. Recombinant superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilium. J Biol Inorg Chem, 5(3): 402-408
    Wu Suijie, Liu Bin, Zhang Xiaobo. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol, 72(6): 1210-1216
    Yabe Y, Kobayashi N, Nishihashi T, et al. 2001. Prevention of neutrophil-mediated hepatic ischemia/reperfusion injury by superoxide dismutase and catalase derivatives. J Pharmacol Exp Ther, 298(3): 894-899
    Yamano S, Sako Y, Nomura N, et al. 1999. A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J Biochem, 126(6): 218-225
    Yoo H Y, Kim S S, Rho H M. 1999. Overexpression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. J Biotechnol, 68(1): 29-35
    Yost F J Jr, Fridovich I. 1973. An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem, 248: 4905-4908
    Youn H D, Kim E J, Roe J H, et al. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J, 318(Pt3): 889-896
    Yu Jing, Yu Xiaomin, Liu Jianhua. 2004. A thermostable manganesecontaining superoxide dismutase from pathogen Chlamydia pneumoniae. FEBS Lett, 562(1-3): 22-26
    Yu Ping. 2007. A new approach to the production of the recombinant SOD protein by methylotrophic Pichia pastoris. Appl Microbiol Biotechnol, 74(1): 93-98
    Yunoki M, Kawauchi M, Ukita N, et al. 2003. Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surg Neurol, 59(3): 156-160
    Zhang Liqing, Guo Fangxian, Xian Hongquan, et al. 2011. Expression of a novel thermostable Cu, Zn-superoxide dismutase from Chaetomium thermophilum in Pichia pastoris and its antioxidant properties. Biotechnol Lett, 33(6): 1127-1132
    Zhang Yi, Wang Junzhi, Wu Yongjie, et al. 2002. Anti-inflammatory effect of recombinant human superoxide dismutase in rats and mice and its mechanism. Acta Pharmacol Sin, 23(5): 439-444
    Zhong Weixiong, Oberley L W, Oberley T D, et al. 1997. Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene, 14(4): 481-490
    Zhu Yanbing, Li Hebin, Zhang Xuqin, et al. 2011. Characterization of a thermostable manganese-containing superoxide dismutase from inshore hot spring thermophile Thermus sp. JM1. Acta Oceanol Sin, 30(6): 95-103
    Zou Yuanyuan, Yang Ling, Liu Guoxian, et al. 2011. Identification of three superoxide dismutase genes from a Geobacillus sp.. Protein J, 30(1): 66-71
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1529) PDF downloads(1622) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return