Citation: | ZHAO Hongjun, SONG Zhiyao, LI Ling, KONG Jun. On the Fourier approximation method for steady water waves[J]. Acta Oceanologica Sinica, 2014, 33(5): 37-47. doi: 10.1007/s13131-014-0470-1 |
Chaplin J R. 1980. Developments of stream-function wave theory. Coastal Eng, 3: 179-205
|
Chappelear J E. 1961. Direct numerical calculation of wave properties. J Geophys Res, 66(2): 501-508
|
Clamond D. 1999. Steady finite-amplitude waves on a horizontal seabed of arbitrary depth. J Fluid Mech, 398: 45-60
|
Clamond D. 2003. Cnoidal-type surface waves in deep water. J Fluid Mech, 489: 101-120
|
Cokelet E D. 1977. Steep gravity waves in water of arbitrary uniform depth. Philos Trans R Soc London: Ser A, 286: 183-230
|
Dalrymple R A, Solana P. 1986. Nonuniqueness in stream function wave theory. J Warway Port Coast and Oc Eng, 112(2): 333-337
|
De S C. 1955. Contributions to the theory of Stokes waves. Proc Camb Phil Soc, 51: 713-736
|
Dean R G. 1965. Stream function representation of nonlinear ocean waves. J Geophys Res, 70(18): 4561-4572
|
Dean R G. 1968. Breaking wave criteria — A study employing a numerical wave theory. Proc 11th Conf Coast Eng. New Nork: ASCE, 108-123.
|
Fenton J D. 1985. A fifth-order Stokes theory for steady waves. J Warway Port Coast and Oc Eng, 111(2): 216-234
|
Fenton J D. 1988. The numerical solution of steady water wave problems. Computers & Geosciences, 14(3): 357-368
|
Fenton J D. 1998. The cnoidal theory of water waves, in: Herbich, J B, Eds. Developments of Offshore Engineering, Houston: Gulf Professional Publishing, 1-34
|
Isobe M, Nishimura H, Horikawa K. 1978. Expressions of perturbation solutions for conservative waves by using wave height. Proc 33rd Annu Conf of JSCE (in Japanese), 760-761.
|
Reprinted in Horikawa K. 1988. Nearshore Dynamics and Coastal Processes, Tokyo: University of Tokyo Press, 28-29
|
Jonsson I G, Arneborg L. 1995. Energy properties and shoaling of higher- order Stokes waves on a current. Ocean Eng, 22(8): 819-857
|
Laitone E V. 1962. Limiting conditions for cnoidal and Stokes waves. J Geophys Res, 67(4): 1555-1564
|
Le Méhauté B, Divoky D, Lin A. 1968. Shallow water waves — A comparison of theories and experiments. Proc 11th Conf Coast Eng. New Nork: ASCE, 86-107
|
Liao Shijun, Cheung K. 2003. Homotopy analysis of nonlinear progressive waves in deep water. J Eng Math, 45(2): 105-116
|
Longuet-Higgins M S. 1975. Integral properties of periodic gravity waves of finite amplitude. Proc R Soc, London: Ser A, 342(1629): 157-174
|
Lukomsky V P, Gandzha I S. 2003. Fractional Fourier approximations for potential gravity waves on deep water. Nonlinear Proc Geoph, 10(6): 599-614
|
Lukomsky V P, Gandzha I S, Lukomsky D V. 2002. Computational analysis of the almost-highest waves on deep water. Comput Phys Commun, 147: 548-551
|
Lundgren H. 1963. Wave trust and wave energy level. Proc 10th Congr Int Assoc Hydraul Res. Delft: IAHR, 147-151
|
Rienecker M M, Fenton J D. 1981. A Fourier approximation method for steady water waves. J Fluid Mech, 104: 119-137
|
Schwartz L W. 1974. Computer extension and analytic continuation of Stokes' expansion for gravity waves. J Fluid Mech, 62: 553-578
|
Skjelbreia L, Hendrickson J. 1960. Fifth order gravity wave theory. Proc 7th Conf Coast Eng. California: Council on Wave Res, The Eng Found, 184-196
|
Song Zhiyao, Zhao Hongjun, Li Ling, et al. 2013. On the universal third order Stokes wave solution. Sci China: Earth Sci, 56(1): 102-114
|
Stokes G G. 1847. On the theory of oscillation waves. Trans Camb Phil Soc, 8: 441-455
|
Stokes G G. 1880. Appendices and supplement to a paper on the theory of oscillation waves. Mathematical and Physical Papers, Vol. 1. Cambridge, UK: Cambridge University Press, 314-326
|
Tanaka M. 1983. The stability of steep gravity waves. J Phys Soc Japan, 52(9): 3047-3055
|
Tao Longbin, Song Hao, Chakrabarti S. 2007. Nonlinear progressive waves in water of finite depth—An analytic approximation. Coastal Eng, 54: 825-834
|
Tsuchiya Y, Yasuda T. 1981. A new approach to Stokes wave theory. Bull Disast Prev Res Inst, 31(1): 17-34
|