Citation: | WU Zijun, ZHOU Huaiyang, PENG Xiaotong, LI Jiangtao, CHEN Guangqian. Rates of bacterial sulfate reduction and their response to experimental temperature changes in coastal sediments of Qi’ao Island, Zhujiang River Estuary in China[J]. Acta Oceanologica Sinica, 2014, 33(8): 10-17. doi: 10.1007/s13131-014-0458-x |
Ahmed S I, King S L, Clayton jr J R. 1984. Organic matter diagenesis in the anoxic sediments of Saanich Inlet, British Columbia, Canada: a case for highly evolved community interactions. Marine Chemistry, 14:233-252
|
Aller R C, Madrid V, Chistoserdov A, et al. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record. Geochimica et Cosmochimica Acta, 74(16):4671-4692
|
Aller R C, Rude P D. 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochimica et Cosmochimica Acta, 52:751-765
|
Al-Raei A M, Bosselmann K, Böttcher M E, et al. 2009. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: Controls by temperature and organic matter. Ocean Dynamics, 59:351-370
|
Arnosti C, Jørgensen B B, Sageman J, et al. 1998. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser, 165:59-70
|
Berner R A, Canfield. 1989. A new model for atmosphere oxygen over phanerozoic time. American Journal of Science, 289:333-361
|
Boetius A, Ravenschlag K, Schubert C J. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407:623-625
|
Boudreau B P, Westrich J T. 1984. The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochimica et Cosmochimica Acta, 48(12):2503-2516
|
Cai Weijun, Dai Minghan, Wang Yongchen, et al. 2004. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res, 24:1301-1319
|
Canfield D E, Jørgensen B B, Fossing H, et al. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113:27-40
|
Chen Fanrong, Yang Yongqiang, Zhang Derong, et al. 2006. Heavy metals associated with reduced sulfur in sediments from different deposition environments in the Pearl River estuary, China. Environmental Geochemistry and Health, 28(3):265-272
|
Crill P M, Martens C S. 1987. Biogeochemical cycling in an organic-rich coastal marine basin: 6. Temporal and spatial variations in sulfate reduction rates. Geochim Cosmochim Acta, 51:1175-1186
|
Edenborn H M, Silverberg N, Mucci A, et al. 1987. Sulfate reduction in deep coastal marine sediments. Marine Chemistry, 21:329-345
|
Elsgaard L, Isaksen M F, Jørgensen B B, et al. 1994. Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent areas: Influence of temperature and substrates. Geochimica et Cosmochimica Acta, 58(16):3335-3343
|
Finke N, Jørgensen B B. 2008. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. ISME J, 2:815-829
|
Fossing H, Jørgensen B B. 1989. Measurement of bacterial sulfate reduction in sediments-evaluation of a single step chromium reduction method. Biogeochemistry, 8:205-222
|
Freese E, Köster J, Rullkötter J. 2008. Origin and composition of organic matter in tidal flat sediments from the German Wadden Sea. OrgGeochem, 39:820-829
|
Froelich P N, Klinkhammer G P, Berder M L, et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagensis. Geochimica et Cosmochimica Acta, 43:1075-1080
|
Gunnarsson A H, Rönnow P H. 1982. Interrelationships between sulfate reducing and methane producing bacteria in coastal sediments with intense sulfide production. Mar Biol, 69:121-128
|
Hines M E, Lyons W B. 1982. Biogeochemistry of nearshore Bermuda sediments: I. Sulfate reduction rates and nutrient generation. Mar Ecol Progr Ser, 8:87-94
|
Hoehler T M, Alperin M J, Albert D B, et al. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta, 62:1745-1756
|
Indrebo G, Pengerud B, Dundas I. 1979. Microbial activities in a permanently stratified estuary: I. Primary production and sulfate reduction. Mar Biol, 51:295-304
|
Isaksen M F, Bak F, Jørgensen B B. 1994. Thermophilic sulfate-reducing bacteria in cold marine sediment. FEMS Microbiol Ecol, 14:1-8
|
Iversen N, Jørgensen B B. 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr, 30(5):944-955
|
Jiang Lijing, Zheng Yanping, Peng Xiaotong, et al. 2009. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol Ecol, 70:249-262
|
Jørgensen B B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments: II. Calculation from mathematical models. Geomicrobiology Journal,1:11-28
|
Jørgensen B B. 1982. Mineralization of organic matter in the sea bed- the role of sulfate reduction. Nature, 296:643-645
|
Jørgensen B B, Sørensen J. 1985. Seasonal cycles of O2, NO3-and SO4 2- reduction in estuarine sediments: the significance of an NO3 -reduction maximum in spring. Mar Ecol Prog Ser, 24:65-74
|
Jørgensen B B, Weber A, Zopfi J. 2001. Sulfate reduction and anaerobic oxidation in Black Sea sediments. Deep-sea Research I, 48: 2097-2120 Kallmeyer J, Ferdelman T G, Weber A, et al. 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2:171-180
|
Knoblauch C, Jørgensen B B. 1999. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol, 1:457-467
|
Martens C S, Berner R A. 1977. Interstitial water chemistry of anoxic Long Island Sound sediments: dissolved gases. Limnology and Oceanography, 22:10-25
|
Martens C S, Albert D B, Alperin M J. 1999. Stable isotope tracing of anaerobic methane oxidation in the gassy sediment of Eckernförde Bay, German Baltic Sea. American Journal of Science, 299: 589-610 Moore T S, Murray R W, Kurtz A C, et al. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229(1-2):141-154
|
Morita R Y. 1975. Psychrophilic bacteria. Microbiol Mol Biol R, 39: 144-167 Murray J W, Grundmans V, Smethie W M. 1978. Interstital water chemistry in the sediments of saanich Inlet. Geochimical et Cosmochimical Acta, 42:1011-1026
|
Nedwell D B. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microb Ecol, 30:101-111
|
Orphan V J, Hease C H, Hinrinchs K. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293:484-487
|
Rabus R, Bruchert V, Amann J, et al. 2002. Physiological response to temperature change of the marine sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiology Ecology, 42:409-417
|
Robador A, Brüchert V, Jørgensen B B. 2009. The impact of temperature change on the activity and community composition of sulfatereducing bacteria in Arctic versus temperate marine sediments. Environ Microbiol, 11:1692-1703
|
Rowe G T, Howarth R. 1985. Early diagenesis of organic matter in sediments off the coast of Peru. Deep-Sea Res, 32:43-55
|
Sagemann J, Jørgensen B B, Greeff O. 1998. Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic ocean. Geomicrobiology Journal, 15:85-100
|
Sahm K, MacGregor B J, Jørgensen B B, et al. 1999. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environmental Microbiology, 1(1):65-74
|
Sawicka. 2011. Arctic to tropic-adaptation and response of anaerobic microorganisms to temperature effects in marine sediments [dissertation]. Bremen: University of Bremen,86-103
|
Sawicka J E, Jørgensen B B, Bruchert V. 2012. Temperature charcteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeoscience Discuss, 9:673-700
|
Takii S, Tanaka H, Kohata K, et al. 2002. Seasonal changes in sulfate reduction in sediments in the inner part of Yokyo Bay. Microbes and Environments, 17(1):10-17
|
Thamdrup B, Fossing H, Jørgensen B B. 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta, 58:5115-5129
|
Wang Hu, Zhou Huaiyang, Peng Xiaotong, et al. 2009. Denitrification in Qi’ao Island coastal zone, the Zhujiang River Estuary in China. Acta Oceanologica Sinica, 28(1):37-146
|
Weber A, Jørgensen B B. 2002. Bacteria sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Research I, 49:827-841
|
Westrich J T, Berner R A. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oceanogr, 29:236-249
|
Westrich J T, Berner R A. 1988. The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiology Journal, 6:99-117
|
Wu Daidai, Wu Nengyou, Ye Yin, et al. 2011. Diagenesis records and pore water composition of methane-seep sediments from the Southeast Hainan Basin, South China Sea. Journal of Geological Research, 3:1-10
|
Wu Zijun, Zhou Huaiyang, Peng Xiaotong, et al. 2006. Anaerobic oxidation of methane: geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China. Chinese Sci Bull, 51:2006-2015
|
Yang Tao, Jiang Shaoyong, Ge Lu, et al. 2010. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence. Chinese Sci Bull, 55: 752-760
|
Yin Xijie, Zhou Huaiyang, Yang Qunhui, et al. 2010. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi’ao Island in the Zhujiang River Estuary in China. Acta Oceanologica Sinica (in Chinese), 32(3):31-39
|