HUANG Rui Xin. Energetics of lateral eddy diffusion/advection:Part Ⅰ. Thermodynamics and energetics of vertical eddy diffusion[J]. Acta Oceanologica Sinica, 2014, 33(3): 1-18. doi: 10.1007/s13131-014-0409-6
Citation: HUANG Rui Xin. Energetics of lateral eddy diffusion/advection:Part Ⅰ. Thermodynamics and energetics of vertical eddy diffusion[J]. Acta Oceanologica Sinica, 2014, 33(3): 1-18. doi: 10.1007/s13131-014-0409-6

Energetics of lateral eddy diffusion/advection:Part Ⅰ. Thermodynamics and energetics of vertical eddy diffusion

doi: 10.1007/s13131-014-0409-6
  • Received Date: 2013-08-30
  • Rev Recd Date: 2013-12-17
  • Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cabbeling and elasticity (compressibility), are discussed. Eddy diffusion and advection lead to changes in density;as a result, gravitational potential energy of the system is changed. Therefore, cabbeling and elasticity play key roles in the energetics of lateral eddy diffusion and advection. Vertical eddy diffusion is one of the key elements in the mechanical energy balance of the global oceans. Vertical eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Vertical eddy stirring pushes cold/dense water upward and warm/light water downward;thus, gravitational potential energy is increased. During the second steps, water masses from different places mix through subscale diffusion, and water density is increased due to cabbeling. Using WOA01 climatology and assuming the vertical eddy diffusivity is equal to a constant value of 2×103 Pa2/s, the total amount of gravitational potential energy increase due to vertical stirring in the world oceans is estimated at 263 GW. Cabbeling associated with vertical subscale diffusion is a sink of gravitational potential energy, and the total value of energy lost is estimated at 73 GW. Therefore, the net source of gravitational potential energy due to vertical eddy diffusion for the world oceans is estimated at 189 GW.
  • loading
  • Carton J A, Giese B S. 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA).Mon Weather Rev,136: 2999-3017
    Conkright M E, Locarnini R A, Garcia H E, et al. 2002. World Ocean Atlas 2001: Objective Analysis, Data Statistics, and Figures. CD-ROM Documentation, National Oceanographic Data Center, Silver Spring, MD, 17
    Eden C, Willebrand J. 1999. Neutral density revisited. Deep-Sea Res Pt II, 46: 33-54
    Feistel R. 1993. Equilibrium thermodynamics of seawater revisited. Prog Oceanogr, 31: 101-179
    Flament P. 2002. A state variable for characterizing water masses and their diffusive stability: spiciness. Progr Oceanogr, 54: 493-501
    Fofonoff N P. 1998. Nonlinear limits to ocean thermal structure. J Mar Res, 56: 793-811
    Fofonoff N P. 2001. Thermal stability of the world ocean thermoclines. J Phys Oceanogr, 31: 2169-2177
    Gent P R, Willebrand J, McDougall T J, et al. 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr, 25: 463-474
    Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20: 150-155
    Gill A E. 1973. Circulation and bottom water production in the Weddell Sea. Deep Sea Res, 20: 111-140
    Griffies S M, Pacanowski R C, Hallberg R W. 2000. Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Monthly Weather Review, 128: 538-564
    Huang R X. 1999. Mixing and energetics of the thermohaline circulation. J Phys Oceanogr, 29: 727-746
    Huang R X. 2010. Ocean circulation, wind-driven and thermohaline processes. Cambridge, United Kingdom: Cambridge University Press, 806
    Huang R X. 2011. Defining the spicity. J Mar Res, 69: 1-15
    Huang R X. 2014a. Energetics of lateral eddy diffusion/advection:
    Part ⅠI. Numerical diffusion/diffusivity and gravitational potential energy change due to isopycnal diffusion. Acta Oceanol Sin, 33(3): 19-39
    Huang R X. 2014b. Energetics of lateral eddy diffusion/advection:
    Part ⅠII. Energetics of horizontal and isopycnal diffusion/advection. Acta Oceanol Sin, 33(3): 40-57
    Huang R X. 2014c. Energetics of lateral eddy diffusion/advection:
    Part ⅠV. Energetics of diffusion/advection in sigma coordinates and other coordinates. Acta Oceanol Sin, 33(3): 58-81
    Jackett D R, McDougall T J. 1997. A neutral density variable for the world's oceans. J Phys Oceanogr, 27: 237-263
    Ledwell J R, Montgomery E T, Polzin K L, et al. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403: 179-182
    Ledwell J R, Watson A J, Law C B. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364: 701-703
    Munk W H. 1966. Abyssal recipes. Deep-Sea Res, 13: 707-730
    Munk W H. 1981. Internal waves and small-scale processes. In: Evolution of physical oceanography, Cambridge, MA: MIT Press, 264-291
    Munk W H, Wunsch C. 1998. Abyssal recipes II: energetics of the tidal and wind mixing. Deep-Sea Res Pt I, 45: 1977-2010
    Price J F, Baringer M O. 1994. Outflows and deep water production by marginal seas. Progr Oceanogr, 33: 161-200
    Ruddick B, Kerr O. 2003. Oceanic thermohaline intrusions: theory. Progr Oceanogr, 56: 483-497
    Ruddick B, Richards K. 2003. Oceanic thermohaline intrusions: observations. Progr Oceanogr, 56: 499-527
    Stommel H. 1962. On the cause of the temperature-salinity curve in the ocean. Proceedings of the National Academy of Science USA, 48: 764-766
    Veronis G. 1972. On properties of sweater defined by temperature, salinity and pressure. J Mar Res, 30: 227-255
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1246) PDF downloads(1493) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return