CHEN Sheng, TAO Chunhui, LI Huaiming, CHEN Yongshun, ZHOU Jianping, WU Tao. A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field[J]. Acta Oceanologica Sinica, 2014, 33(8): 34-43. doi: 10.1007/s13131-014-0406-9
Citation: CHEN Sheng, TAO Chunhui, LI Huaiming, CHEN Yongshun, ZHOU Jianping, WU Tao. A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field[J]. Acta Oceanologica Sinica, 2014, 33(8): 34-43. doi: 10.1007/s13131-014-0406-9

A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field

doi: 10.1007/s13131-014-0406-9
  • Received Date: 2012-11-12
  • Rev Recd Date: 2013-06-09
  • Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/V Dayang I in the "Precious Stone Mountain" hydrothermal field on the Galapagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activity in this field, indicating the presence of a new hydrothermal vent.
  • loading
  • Baker E T. 1994. A six-year time series of hydrothermal plumes over the Cleft segment of Juan de Fuca Ridge. Journal of Geophysical research, 99:4889-4904
    Baker E T, Cormier M-H, Langmuir C H, et al. 2001. Hydrothermal plumes along segments of contrasting magmatic influence, 15°20′-18°30′N, East Pacific Rise: Influence of axial faulting. Geochem Geophys Geosyst, 9: doi: 10.1029/2000GC000165
    Baker E T, German C R. 2004. On the global distribution of hydrothermal vent fields. In: German C R, Lin J, Parson L M, eds. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans, Geophysical Monograph Series 148. Washington D C: the American Geophysical Union,245-266
    Baker E T, German C R, Elderfield H. 1995. Hydrothermal plumes over spreading-center axes: global distributions and geological inferences. Geophysical Monograph, 91(AGU):47-71
    Baker E T, Haymon R M, Resing J A, et al. 2008. High resolution surveys along the hot spot affected Galapagos Spreading Center: 1. Distribution of hydrothermal activity. Geochem Geophys Geosyst, 9(Q09003):1-16
    Baker E T, Hey R N, Lupton J E, et al. 2002. Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise:27.5°-32.3°S. Journal of Geophysical reasearch, 107(B7): 2130 Baker E T, Milburn H B. 1997. MAPR: a New Instrument for Hydrothermal Plume Mapping. RIDGE Events, 8:23-25
    Bird R T, Tebbens S F, Kleinrock M C, et al. 1999. Episodic triple-junction migration by rift propagation and microplates. Geology, 27(10):911-914
    Canaleas J P, Danobeitia J J, Detrick R S, et al. 1997. Variations in axial morphology along the Galapagos spreading center and the influence of the Galapogos hotspot. J Geophys Res, 102:27341-27354
    Canales J P, Ito G, Detrick R S, et al. 2002. Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos hotspot swell. Earth and Planetary Science Letters, 203(1):311-327
    Charlou J-L, Donvald J-P. 1993. Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridg. Journal of Geophysical reasearch, 98(B6):9625-9642
    Chin C S, Klinkhammer G P, Wilson C. 1998. Detection of hydrothermal plumes on the northern Mid-Atlantic Ridge: results from optical measurements. Earth and Planetary Science Letters, 162(1998): 1-13 Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal springs on the Galápagos Rift. Science, 203(4385):1073-1083
    Ernst G G J, Cave R R, German C R, et al. 2000. Vertical and lateral splitting of a hydrothermal plume at Steinaholl, Reykjanes Ridge, Iceland. Earth and Planetary Science, 179:529-537
    German C R, Hergt J, Palmer M R, et al. 1999. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chemical Geology, 155:65-75
    Ishibashi J, Wakita H, Okamura K. 1997. Hydrothermal methane and manganese variation in the plume over the superfast-spreading southern East Pacific Rise. Geochim Cosmochim Acta, 61(3): 485-500 Ito G, Lin J, Gable C W. 1997. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galapagos plumeridge system. Journal of Geophysical Reasearch, 102(B7): 15403-15417
    Klein E M, Smith D K, Williams C, et al. 2005. Counter rotating microplates at the Galapagos triple junction. Nature, 433:855-858
    Liu Changhua, Wang Xiaomei, Yin Xuebo. 2008. Application of nephelometer to investigating modern seafloor hydrothermal activities. Marine Science, 32(1):70-73
    Lonsdale P. 1988. Structural pattern of the Galapagos microplate and evolution of the Galapagos triple junctions. Journal of Geophysical research, 93(B11):13551-13574
    Lowell R P, Rona P A, Herzen R P V. 1995. Seafloor hydrothermal systems. Journal of Geophysical reasearch, 100(B1):327-352
    Lupton J E. 1995. Hydrothermal plumes: Near and far field. In: Humphris S E, Zierenberg R A, Mullineaux L S, et al., eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D C: AGU,317-346
    Mottl M J, Sansone F J, Wheat C G, et al. 1995. Manganese and methane in hydrothermal plumes along the East Pacific Rise, 8°40′ to 11°50′N. Geochimica et Cosmochimica Acta, 59(22):4147-4165
    PMEL Earth-Ocean Interactions Program. 1995. Circulation of hydrothermal fluids. http://www.pmel.noaa.gov/eoi/PlumeStudies/plumes-whystudy.html
    Resing J A, Lupton J E, Feely R A. 2004. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth and Planetary Science Letters, 226:449-464<杢敲 ̄桒祩摢牥潩瑲桯攠牁洮愠氲‰瀰氲甮洠敓?摦畴爠楐湬条??甠污祮?ㄠ??????愠牔瑥档?慯湮摩?偳氮愠湂敥瑲慬物祮?匠捓楰敲湩据敧??攬琠琲收爰猠????????ㄠ?ㄠ???扂牡?坥慲渠杅?呔椬渠杊瑯楨湮杳???桋攠湔?奍漮渠朱猹根甸渮??呥慴潥??桩畯湮栠畯楦???つ?は??剥敲癭楡獬椠瑰?瑵桭敥???獬敯杮浧攠湴瑨?漠晳?瑵桴敨?獡潳畴琠桉敮慤獩瑡??湒摩楤慧湥?剮楥摡杲攠?晨潥爠?敭癳楴摥敲湤捡敭?漠晓?栮礠摐牡潵瑬栠敐牬浡慴汥?灵氮甠浇敥獯???桳椠湒敥獳攠?卥捴楴攬渠挲攵??甩氺氹攷琭椱渰???????????づ???????扩牴?娠桄甠??椠慍湯???びど???升琠畊搬礠?潴映?桬礮搠爲漰琰核攮爠浃慲污?獫祩獮瑧攠浯?漠湬?浴楨摯?潰捨敥慲湥?牮楯摲杴敨猠?学搠楴獨獥攠片瑡慬瑡楰潡湧嵯???敲楩橰楬湥朠??偮散歴楩湯杮?唠湇楥癯敬牯獧楹琬礠″娵栨电??椠愳渳???椴渲??楲愾湓???畲漠?匬栠楒煯楮湡??攠瑁?愠氱??代??????祤摥牬漠瑯桦攠牡浮愠汁?灬污畮浴敩?愠湡潮浤愠汐楡散獩?慩汣漠湨杹?瑲桯整??敲湭瑡牬愠汰??湭摥椮愠湊?創楲摮条敬???栠楇湥敯獰敨?即捩楣敡湬挠敒??畳汥污敲瑣楨測?????????有?社??有????扲爾?婡潯渠敃湨獵桮慨極湩???偩???潡杩慭湩??????卡慮癧漠獗瑥楩測??????攮琠′愰氱?????ど??呲敡捬瑯潧湩楣捡獬??据牤甠獧瑥慯汣?獥瑭物畣捡瑬甠牦敥?慴湵摲?敳瘠潯汦甠瑳極潬湦?潤晥?瑣桨敩??慥汹慳瀠慦杲潯獭?瑴牨楥瀠水改?樳甹渲捅琠楨潹湤???慨牥楲湭敡??敦潩汥潬杤礠???????????と??????扮牤?an Ridge and their geological inferences. Chinese Science Bulletin, 56(26):2828-2838
    Tao Chunhui, Li Huaiming, Wu Guanghai, et al. 2011b. First hydrothermal active vent discovered on the Galapagos Microplate. American Geophysical Union, Fall Meeting 2011, abstract #OS11B-1488
    Tao Chunhui, Li Huaiming, Yang Yaoming, et al. 2011c. Two hydrothermal fields found on the southern Mid-Atlantic Ridge. Science China-Earth Science, 54(9):1302-1303
    Tao Chunhui, Lin Jian, Guo Shiqin. 2007. The Chinese DY115-19 cruise: discovery of the first active hydrothermal vent field at the ultraslow spreading southwest Indian Ridge. Interridge News. http:// www.interridge.org/zh-hans/node/86
    Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2011d. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1):47-50
    Tao Chunhui, Lin Jian, Wu Guanghai, et al. 2008. First active hydrothermal vent fields discovered at the equatorial southern East Pacific Rise by the Chinese DY115-20 Expedition. American Geophysical Union, abstract #V41B-2081
    Tao Chunhui, Wu Guanghai, Ni Jianyu. 2009. New hydrothermal fields found along the SWIR during the Legs5-7
    of the Chinese DY115- 20 Expedition. AGU, abstract #OS21A-1150
    Thomson R E, Delaney J R, McDuff R E, et al. 1992. Physical characteristics of the Endeavour Rid
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1242) PDF downloads(985) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return