SHANG Xiaodong, XU Chi, CHEN Guiying, WU Lixin. Observing spectral characteristics over a continental shelf and slope in the South China Sea[J]. Acta Oceanologica Sinica, 2013, 32(7): 29-37. doi: 10.1007/s13131-013-0329-x
Citation: SHANG Xiaodong, XU Chi, CHEN Guiying, WU Lixin. Observing spectral characteristics over a continental shelf and slope in the South China Sea[J]. Acta Oceanologica Sinica, 2013, 32(7): 29-37. doi: 10.1007/s13131-013-0329-x

Observing spectral characteristics over a continental shelf and slope in the South China Sea

doi: 10.1007/s13131-013-0329-x
  • Received Date: 2012-03-02
  • Rev Recd Date: 2012-11-15
  • Using in situmeasurement data fromMay-June, 1998, and data fromthe Asian seas international acoustics experiment (ASIAEX) from2001 in the South China Sea (SCS), the spectral density function and the dissipation spectrum function are estimated. In the infra-gravity wave (IGW) band, the power spectra of velocity (u, v, w) are universal functionswith respect to characteristic frequencies, which correspond to the peak frequencies of the dissipation spectrum (PFDS). This suggests that high-frequency internal waves in the IGW band have similar dynamical characteristics. In addition, the evolution of these characteristic frequencies is explored and its highest value is 8.8 cph (cycles per hour, 1 cph=2.778×10-3 Hz).
  • loading
  • Beardsley R C, Duda T F, Lynch J F, et al. 2004. Barotropic tide in the northeast South China Sea. IEEE J Ocean Eng, 29(4): 1075-1085
    Bishakhdatta G, Sutanu S. 2010. Turbulence during the generation of internal tide on a critical Slope. Phys Rev Lett, 104: 218502
    Carrett C J R, Munk W H. 1972. Space time scales of internal waves. Geophys Astrophs Fluid Dyn, 2: 225-264
    Carrett C J R, Munk W H. 1975. Space time scales of internal waves, a progress report. J Geophys Res, 20: 291-297
    Carter G S, Gregg M C. 2006. Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J Phys Oceanogr, 36 (6): 1136-1147
    Fang Wendong, Shi Ping, Long Xiaomin, et al. 2005. Internal solitons in the northern South China Sea from in situ observations. Chi Science Bull, 50(15): 1627-1631
    Fer I. 2006. Scaling turbulent dissipation in an arctic fjord. Deep-Sea Res: Part II, 53: 77-95
    Gonella J. 1972. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res, 19: 833-846
    Gregg M C. 1989. Scaling turbulent dissipation in the thermocline. J Geophys Res, 94: 9686-9698
    Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Letters to Nature, 422: 513-515
    HendrikMvan Aken, Hans van Haren, Leo RMMaas. 2007. The highresolution vertical structure of internal tides and near-inertial wavesmeasured with an ADCP over the continental slope in the Bay of Biscay. Deep-Sea Res: Part I, 54: 533-556
    Henyey F S,Wright J, Flatte’ SM. 1986. Energy and action flow through an internal wave field: an eikonal approach. J Geophys Res, 91: 8487-8495
    Hibiya T, NagasawaM, Niwa Y. 2002. Nonlinear energy transfer within the oceanic internal wave spectrum atmid and high latitudes. J Geophys Res, 107 (C11): 3207
    Hibiya T, Niwa Y, Nakajima K, et al. 1996. Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J Geophys Res, 101(C6): 14123-14130
    Herbers T H C, Elgar S, Guza R T, et al. 1995. Infragravity-frequency (0.005-0.05 Hz) motions on the shelf: Part II, Free waves. J Phys Oceanogr, 25: 1063-1079
    Klymak JM,MoumJ N. 2007. Oceanic isopycnal slope spectra: Part II. Turbulence. J Phys Oeanogr, 37: 1232-1245
    Lien Renchieh, Tang Tswenyung, ChangMinghuei, et al. 2005. Energy of nonlinear internal waves in the South China Sea. Geophys Res Lett, 32: L05615
    Liu A K, Zhao Y, Tang Tswenyung, et al. 2004. Nonlinear internal wave study during ASIAEX. International Symposium on Underwater Technology, UT ’04, 20-23 April. Taipei: IEEE, 231-238
    Lvov Y V, Polzin K L, Tabak E G. 2004. Energy spectra of the ocean’s internal wave field: theory and observations. Phys Rev lett, 92: 128501
    McComas C H,Müller P. 1981. The dynamic balance of internal waves. J Phys Oceanogr, 11: 970-986
    Mihaly S F, Thomson R E, Rabinovich A B. 1998. Evidence for nonlinear interaction between internal waves of inertial and semidiurnal frequency. Geophys Res Lett, 25: 1205-1208
    Petruncio E, Paduan J, Rosenfeld L. 2002. Numerical simulations of the internal tide in a submarine canyon. Ocean Modell, 4: 221-248
    Pope S B. 2000. Turbulent Flows. Cambridge, UK: Cambridge University Press, 124-128
    Shang Xiaodong, Lu Zhumin, Xie XiaoHui, et al. 2009. Characteristics of internal wave spectra on the continental slope of northern South China Sea. Journal of Tropical Oceanology (in Chinese), 28(3): 16-20
    Shang Xiaodong, Xia Keqing. 2001. Scaling of the velocity power spectra in turbulent thermal convection, Physical Review: E, 64: 065301
    Shi Xungang. 1994. Turbulence (in Chinese). Tianjin: Tianjin University Press
    Uchiyama Y, McWilliams J C. 2008. Infragravity waves in the deep ocean: generation, propagation, and seismic hum excitation. J Geophys Res, 113: C07029 van Haren H. 2002. On the nature of internal wave spectra near a continental slope. Geophys Res Lett, 29: 121615
    van Haren H. 2004. Current spectra under varying stratification conditions in the central North Sea. J Sea Res, 51: 77-91
    van HarenH. 2005. Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys Res Lett, 32: L23611
    van Haren H. 2011. Internal wave-turbulence pressure above sloping sea bottoms. Geophys Res Lett, 116: C12004
    vanHaren H, Howarth M J. 2004. Enhanced stability during reduction of stratification in the North Sea. Cont Shelf Res, 24: 805-819
    Wunsch C. 1975. Internal tides in the ocean. Rev Geophys Space Phys, 13(1): 167-182
    Xie Xiaohui, Chen Guiying, Shang Xiaodong, et al. 2008. Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophy Res Lett, 35: L13604
    Xie Xiaohui, Shang Xiaodong, Chen Guiying. 2010. Nonlinear interaction between internal tidal waves in the northeastern South China Sea. Chinese Journal of Oceanology and Limnology, 28: 996-1001
    Xie Xiaohui, Shang Xiaodong, Chen Guiying, et al. 2009. Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophy Res Lett, 36: L02606
    Xing Jiuxing, Davies A M. 2001. Nonlinear effects of internal tides on the generation of tidal mean flow at the Hebrides shelf edge. Geophys Res Lett, 28: 3939-3942
    Zakharov V E, Lvov V S, Falkovich G. 1992. Kolmogorov Spectra of Turbulence. Berlin: Springer-Verlag
    Zhao Zhongxiang, Alford MH. 2006. Source and propagation of internal solitary waves in the northern South China Sea. J Geophys Res, 111: C11012
    Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys Res Lett, 31: L06302
    Zheng Quanan, Susanto R D, Ho C R, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J Geophys Res, 112: C03021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1351) PDF downloads(1489) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return