HE Hailun, XU Yao. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002[J]. Acta Oceanologica Sinica, 2016, 35(3): 46-53. doi: 10.1007/s13131-015-0786-5
Citation: WANG Difeng, GONG Fang, PAN Delu, HAO Zengzhou, ZHU Qiankun. Introduction to the airborne marine surveillance platform and its application to water quality monitoring in China[J]. Acta Oceanologica Sinica, 2010, (2): 33-39. doi: 10.1007/s13131-010-0019-x

Introduction to the airborne marine surveillance platform and its application to water quality monitoring in China

doi: 10.1007/s13131-010-0019-x
  • Received Date: 2008-10-15
  • Rev Recd Date: 2009-05-07
  • China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safeguard, which is of benefit to the harmonious and sustainable development of coastal economy. Onboard the planes, three kinds of remote sensing sensors have been installed, including a marine airborne multi-spectrum scanner (MAMS), an optical-electronic platform, and an airborne hyper-spectral system AISA+. The specifications of remote sensing platforms were introduced briefly first, then examples of water quality monitoring by airborne remote sensing were presented, including the monitoring in coastal suspended material, oil-spill and abnormal warm water, etc.
  • Relative Articles

  • Cited by

    Periodical cited type(14)

    1. R. Rachmayani, N. S. Ningsih, I. Ardiansyah. The effect of reclamation on the significant wave height changes in Jakarta Bay during Hagibis and Mitag typhoons. Journal of Ocean Engineering and Marine Energy, 2023, 9(1): 165. doi:10.1007/s40722-022-00249-8
    2. Ping Wang, Mengke Wang, Liming Zuo, et al. Risk assessment of marine disasters in fishing ports of Qinhuangdao, China. Regional Studies in Marine Science, 2023, 60: 102832. doi:10.1016/j.rsma.2023.102832
    3. Jingwei Gu, Xiuzhong Li, Yijun He. A speckle noise suppression method based on surface waves investigation and monitoring data. Acta Oceanologica Sinica, 2023, 42(1): 131. doi:10.1007/s13131-022-2103-4
    4. Yuyi Hu, Weizeng Shao, Yongliang Wei, et al. Analysis of Typhoon-Induced Waves along Typhoon Tracks in the Western North Pacific Ocean, 1998–2017. Journal of Marine Science and Engineering, 2020, 8(7): 521. doi:10.3390/jmse8070521
    5. Chengcheng Qian, Haoyu Jiang, Xuan Wang, et al. Climatology of Wind-Seas and Swells in the China Seas from Wave Hindcast. Journal of Ocean University of China, 2020, 19(1): 90. doi:10.1007/s11802-020-3924-4
    6. Maosheng Ye, Shuang Li, Zhongshui Zou, et al. Tower-based observation of air-sea momentum flux: comparisons between onshore and offshore winds. Acta Oceanologica Sinica, 2020, 39(7): 61. doi:10.1007/s13131-020-1626-9
    7. Yuyi Hu, Weizeng Shao, Jian Shi, et al. Analysis of the typhoon wave distribution simulated in WAVEWATCH- III model in the context of Kuroshio and wind-induced current. Journal of Oceanology and Limnology, 2020, 38(6): 1692. doi:10.1007/s00343-019-9133-6
    8. Sheng Dong, Yijie Gong, Zhifeng Wang, et al. Wind and wave energy resources assessment around the Yangtze River Delta. Ocean Engineering, 2019, 182: 75. doi:10.1016/j.oceaneng.2019.04.030
    9. R.O. Cecilio, S.R. Dillenburg. An ocean wind-wave climatology for the Southern Brazilian Shelf. Part II: Variability in space and time. Dynamics of Atmospheres and Oceans, 2019, 88: 101103. doi:10.1016/j.dynatmoce.2019.101103
    10. Ning Wang, Yijun Hou, Shuiqing Li, et al. Numerical simulation and preliminary analysis of typhoon waves during three typhoons in the Yellow Sea and East China Sea. Journal of Oceanology and Limnology, 2019, 37(6): 1805. doi:10.1007/s00343-019-8260-4
    11. Weizeng Shao, Yexin Sheng, Huan Li, et al. Analysis of Wave Distribution Simulated by WAVEWATCH-III Model in Typhoons Passing Beibu Gulf, China. Atmosphere, 2018, 9(7): 265. doi:10.3390/atmos9070265
    12. Hailun He, Jinbao Song, Yefei Bai, et al. Climate and extrema of ocean waves in the East China Sea. Science China Earth Sciences, 2018, 61(7): 980. doi:10.1007/s11430-017-9156-7
    13. P.R. Shanas, V.M. Aboobacker, Alaa M.A. Albarakati, et al. Climate driven variability of wind-waves in the Red Sea. Ocean Modelling, 2017, 119: 105. doi:10.1016/j.ocemod.2017.10.001
    14. Yao Xu, Fan Bi, Jinbao Song, et al. The temporal and spatial variations in the Pacific wind and wave fields for the period 2002–2011. Acta Oceanologica Sinica, 2017, 36(3): 26. doi:10.1007/s13131-017-1039-6

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.7 %FULLTEXT: 28.7 %META: 71.3 %META: 71.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.7 %其他: 0.7 %China: 41.8 %China: 41.8 %Estonia: 0.7 %Estonia: 0.7 %France: 3.4 %France: 3.4 %Korea Republic of: 0.7 %Korea Republic of: 0.7 %Malaysia: 0.7 %Malaysia: 0.7 %Russian Federation: 3.7 %Russian Federation: 3.7 %Singapore: 0.2 %Singapore: 0.2 %United States: 48.0 %United States: 48.0 %其他ChinaEstoniaFranceKorea Republic ofMalaysiaRussian FederationSingaporeUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (513) PDF downloads(475) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return