[1] Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9): 2228–2250. doi: 10.1175/JPO3101.1
[2] Cheng Sukun, Rogers W E, Thomson J, et al. 2017. Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone. Journal of Geophysical Research: Oceans, 122(11): 8770–8793. doi: 10.1002/2017JC013275
[3] Dai Haijin, Cui Jian, Yu Jingping. 2017. Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone. Acta Oceanologica Sinica, 36: 14–20
[4] Dai Haijin, McWilliams J C, Liang Junhong. 2019. Wave-driven mesoscale currents in a marginal ice zone. Ocean Modelling, 134: 1–17. doi: 10.1016/j.ocemod.2018.11.006
[5] Dumont D, Kohout A, Bertino L. 2011. A wave-based model for the marginal ice zone including a floe breaking parameterization. Journal of Geophysical Research: Oceans, 116(C4): C04001
[6] Gula J, Molemaker M J, McWilliams J C. 2015. Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophysical Research Letters, 42(10): 4054–4062. doi: 10.1002/2015GL063731
[7] Häkkinen S. 1986. Coupled ice-ocean dynamics in the marginal ice zones: upwelling/downwelling and eddy generation. Journal of Geophysical Research: Oceans, 91(C1): 819–832. doi: 10.1029/JC091iC01p00819
[8] Hibler W D III. 1979. A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4): 815–846. doi: 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
[9] Horvat C, Tziperman E, Campin J M. 2016. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophysical Research Letters, 43(15): 8083–8090. doi: 10.1002/2016GL069742
[10] Hwang B, Wilkinson J, Maksym T, et al. 2017. Winter-to-summer transition of Arctic sea ice breakup and floe size distribution in the Beaufort Sea. Elem Sci Anth, 5: 40. doi: 10.1525/elementa.232
[11] Johannessen J A, Johannessen O M, Svendsen E, et al. 1987a. Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments. Journal of Geophysical Research, 92(C7): 6754–6772. doi: 10.1029/JC092iC07p06754
[12] Johannessen O M, Johannessen J A, Svendsen E, et al. 1987b. Ice-edge eddies in the Fram Strait marginal ice zone. Science, 236(4800): 427–429. doi: 10.1126/science.236.4800.427
[13] Kohout A L, Williams M J M, Dean S M, et al. 2014. Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502): 604–607. doi: 10.1038/nature13262
[14] Lei Ruibo, Tian-Kunze X, Li Bingrui, et al. 2017. Characterization of summer Arctic sea ice morphology in the 135°-175°W sector using multi-scale methods. Cold Regions Science and Technology, 133: 108–120. doi: 10.1016/j.coldregions.2016.10.009
[15] Liu A K, Häkkinen S, Peng C Y. 1993. Wave effects on ocean-ice interaction in the marginal ice zone. Journal of Geophysical Research, 98(C6): 10025–10036. doi: 10.1029/93JC00653
[16] Manucharyan G E, Thompson A F. 2017. Submesoscale sea ice-ocean interactions in marginal ice zones. Journal of Geophysical Research: Oceans, 122(12): 9455–9475. doi: 10.1002/2017JC012895
[17] Manucharyan G E, Timmermans M L. 2013. Generation and separation of mesoscale eddies from surface ocean fronts. Journal of Physical Oceanography, 43(12): 2545–2562. doi: 10.1175/JPO-D-13-094.1
[18] Meylan M H, Bennetts L G, Kohout A L. 2014. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophysical Research Letters, 41(14): 5046–5051. doi: 10.1002/2014GL060809
[19] Rampal P, Bouillon S, Ólason E, et al. 2016. neXtSIM: a new Lagrangian sea ice model. The Cryosphere, 10(3): 1055–1073. doi: 10.5194/tc-10-1055-2016
[20] Røed L P, O’Brien J J. 1983. A coupled ice-ocean model of upwelling in the marginal ice zone. Journal of Geophysical Research, 88(C5): 2863–2872. doi: 10.1029/JC088iC05p02863
[21] Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
[22] Strong C, Rigor I G. 2013. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical Research Letters, 40(18): 4864–4868. doi: 10.1002/grl.50928
[23] Thomson J. 2015. ONR sea state DRI cruise report. Washington, DC: Office of Naval Research Sea State Initiative, Applied Physics Lab, University of Washington
[24] Uchiyama Y, McWilliams J C, Shchepetkin A F. 2010. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling, 34(1–2): 16–35. doi: 10.1016/j.ocemod.2010.04.002
[25] Wadhams P, Aulicino G, Parmiggiani F, et al. 2018. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. Journal of Geophysical Research: Oceans, 123(3): 2213–2237. doi: 10.1002/2017JC013003
[26] Wadhams P, Holt B. 1991. Waves in frazil and pancake ice and their detection in Seasat synthetic aperture radar imagery. Journal of Geophysical Research: Oceans, 96(C5): 8835–8852. doi: 10.1029/91JC00457
[27] Wang Yu, Holt B, Erick Rogers W, et al. 2016. Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014. Journal of Geophysical Research: Oceans, 121(2): 1502–1525. doi: 10.1002/2015JC011349
[28] Weber J E. 1987. Wave attenuation and wave drift in the marginal ice zone. Journal of Physical Oceanography, 17(12): 2351–2361. doi: 10.1175/1520-0485(1987)017<2351:WAAWDI>2.0.CO;2
[29] Williams T D, Bennetts L G, Squire V A, et al. 2013. Wave-ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Modelling, 71: 92–101
[30] Williams T D, Rampal P, Bouillon S. 2017. Wave-ice interactions in the neXtSIM sea-ice model. The Cryosphere, 11(5): 2117–2135. doi: 10.5194/tc-11-2117-2017
[31] Zhang Xueyan, Dai Haijin, Zhao Jun, et al. 2019. Generation mechanism of an observed submesoscale eddy in the Chukchi Sea. Deep Sea Research Part I: Oceanographic Research Papers, 148: 80–87. doi: 10.1016/j.dsr.2019.04.015