A new merged dataset of global ocean chlorophyll a concentration with higher spatial and temporal coverage

XIAO Yanfang ZHANG Jie CUI Tingwei SUN Ling

肖艳芳, 张杰, 崔廷伟, 孙凌. 一套具有更高时空分辨率的全球海洋叶绿素浓度遥感融合产品数据集[J]. 海洋学报英文版, 2018, 37(7): 118-130. doi: 10.1007/s13131-018-1249-6
引用本文: 肖艳芳, 张杰, 崔廷伟, 孙凌. 一套具有更高时空分辨率的全球海洋叶绿素浓度遥感融合产品数据集[J]. 海洋学报英文版, 2018, 37(7): 118-130. doi: 10.1007/s13131-018-1249-6
XIAO Yanfang, ZHANG Jie, CUI Tingwei, SUN Ling. A new merged dataset of global ocean chlorophyll a concentration with higher spatial and temporal coverage[J]. Acta Oceanologica Sinica, 2018, 37(7): 118-130. doi: 10.1007/s13131-018-1249-6
Citation: XIAO Yanfang, ZHANG Jie, CUI Tingwei, SUN Ling. A new merged dataset of global ocean chlorophyll a concentration with higher spatial and temporal coverage[J]. Acta Oceanologica Sinica, 2018, 37(7): 118-130. doi: 10.1007/s13131-018-1249-6

一套具有更高时空分辨率的全球海洋叶绿素浓度遥感融合产品数据集

doi: 10.1007/s13131-018-1249-6
基金项目: The National Key R & D Program of China under contract No. 2016YFA0600102; the National Natural Science Foundation of China under contract Nos 41506203, 41476159, 41506204, 41606197, 41471303 and 41706209; the Cooperation Project of FIO and KOIST under contract No. PI-2017-03.

A new merged dataset of global ocean chlorophyll a concentration with higher spatial and temporal coverage

  • 摘要: 认识海洋在全球碳循环中的作用及其对环境变化的响应,需要高时空分辨率的观测数据。由于轨道宽度、云雨天气、太阳耀斑等的影响,单一的水色传感器的观测能力十分有限,将多源海洋水色卫星进行融合是提高水色数据时空覆盖的一种有效途径。SeaWiFS和MERIS分别于2010年12月11日和2012年5月9日停止运行,在很大程度上降低了水色融合产品时空覆盖的提升。我们在融合过程中加入了FY-3 MERSI数据,生成了全球海洋叶绿素浓度遥感融合产品数据集。数据源包括SeaWiFS、MERIS、MODIS-Aqua、VIIRS和MERSI。结果表明:加入MERSI后,融合产品的日平均有效空间覆盖提高了9%;采样频率(同一区域一年中获取有效数据的次数)由57天/年提高到109天/年。利用实测数据和国外同类融合产品(ESA GlobColour和NASA MEaSUREs)对新的数据集进行了质量评价。与实测数据相比,加入MERSI的融合产品精度与未加入MERSI的融合产品基本一致;与国外同类融合产品的偏差小于10%。新数据集的时间序列特性与未加入MERSI的融合产品以及单传感器的一致。
  • Antoine D, d'Ortenzio F, Hooker S B, et al. 2008. Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project). Journal of Geophysical Research, 113(C7):C07013
    Antoine D, Morel A, Gordon H R, et al. 2005. Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. Journal of Geophysical Research:Oceans, 110(C6):C06009, doi: 10.1029/2004JC002620
    Arrigo K R, Van Dijken G L, Bushinsky S. 2008. Primary production in the Southern Ocean, 1997-2006. Journal of Geophysical Research:Oceans, 113(C8):C08004
    Bailey S W, Werdell P J. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1-2):12-23
    Bricaud A, Bosc E, Antoine D. 2002. Algal biomass and sea surface temperature in the Mediterranean Basin:intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sensing of Environment, 81(2-3):163-178
    Chavez F P, Messié M, Pennington J T. 2011. Marine primary production in relation to climate variability and change. Annual Review of Marine Science, 3:227-260
    Claustre H, Morel A, Hooker S B, et al. 2002. Is desert dust making oligotrophic waters greener?. Geophysical Research Letters, 29(10):1469
    Donlon C, Berruti B, Buongiorno A, et al. 2012. The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sensing of Environment, 120:37-57
    D'Ortenzio F, Marullo S, Ragni M, et al. 2002. Validation of empirical SeaWiFS algorithms for Chl aorophyll-α retrieval in the Mediterranean Sea:a case study for oligotrophic seas. Remote Sensing of Environment, 82(1):79-94
    Estep L, Arnone R. 1994. Effect of whitecaps on determination of Chl aorophyll concentration from satellite data. Remote Sensing of Environment, 50(3):328-334
    Fargion G S, McClain C R. 2003. MODIS validation, data merger and other activities accomplished by the SIMBIOS project:2002-2003. NASA/TM-2003-212249. Greenbelt, MD, USA. NASA/GSFC, 54
    Ford D, Barciela R. 2017. Global marine biogeochemical reanalyses assimilating two different sets of merged ocean colour products. Remote Sensing of Environment, 203(15):40-54
    Franz B A. 2003. "A long-term intercomparison of oceanic optical property retrievals from MODIS-Terra and SeaWiFS". MODIS validation, data merger and other activities accomplished by the SIMBIOS project:2002-2003. NASA-TM-2003-212249. Greenbelt, Maryland:NASA, Goddard Space Flight Center
    Garver S A, Siegel D A. 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation:1. Time series from the Sargasso Sea. Journal of Geophysical Research:Oceans, 102(C8):18607-18625
    Gregg W W, Conkright M E. 2001. Global seasonal climatologies of ocean Chl aorophyll:blending in situ and satellite data for the Coastal Zone color Scanner era. Journal of Geophysical Research:Oceans, 106(C2):2499-2515
    Gregg W W, Conkright M E, O'Reilly J E. et al.. 2002. NOAA-NASA coastal zone color scanner reanalysis effort. Applied Optics, 41(9):1615-1628
    Gregg W W, Esaias W E, Feldman G C, et al. 1998. Coverage opportunities for global ocean color in a multimission era. IEEE Transactions on Geoscience and Remote Sensing, 36(5):1620-1627
    Gregg W W, Woodward R H. 1998. Improvements in coverage frequency of ocean color:combining data from SeaWiFS and MODIS. IEEE Transactions on Geoscience and Remote Sensing, 36(4):1350-1353
    Hlaing S, Harmel T, Gilerson A, et al. 2013. Evaluation of the VⅡRS ocean color monitoring performance in coastal regions. Remote Sensing of Environment, 139:398-414
    Hooker S B, Maritorena S. 2000. An evaluation of oceanographic radiometers and deployment methodologies. Journal of Atmospheric and Oceanic Technology, 17(6):811-830
    Hu Chuanmin, Lee Zhongping, Franz B. 2012. Chl aorophyll aalgorithms for oligotrophic oceans:a novel approach based on three-band reflectance difference. Journal of Geophysical Research:Oceans, 117(C1):C01011, doi: 10.1029/2011JC007395
    Hu Chuanmin, Feng Lian, Lee Zhongping. 2013. Uncertainties of SeaWiFS and MODIS remote sensing reflectance:implications from clear water measurements. Remote Sensing of Environment, 133:168-182
    Hu Xiuqing, Liu Jingjing, Sun Ling, et al. 2010. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors. Canadian Journal of Remote Sensing, 36(5):566-582
    IOCCG. 2007. Ocean-colour data merging. In:Gregg W, ed. Reports of the International Ocean-Colour Coordinating Group. No.6, IOCCG. Dartmouth, Canada
    Johnson K S, Berelson W M, Boss E S, et al. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders:prospects for a global array. Oceanography, 22(3):216-225
    Kahru M, Jacox M G, Lee Z, et al. 2015. Optimized multi-satellite merger of primary production estimates in the California Current using inherent optical properties. Journal of Marine Systems, 147:94-102
    Kahru M, Kudela R M, Manzano-Sarabia M, et al. 2012. Trends in the surface Chl aorophyll of the California Current:merging data from multiple ocean color satellites. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 77-80:89-98
    Kara A B, Hurlburt H E, Rochford P A, et al. 2004. The impact of water turbidity on interannual sea surface temperature simulations in a layered global ocean model. Journal of Physical Oceanography, 34(2):345-359
    Kwiatkowska E. 2003. Comparisons of daily global ocean color data sets:MODIS-Terra/Aqua and SeaWiFS. In:Fargion G S, McClain C R, eds. MODIS Validation, Data Merger, and Other Activities Accomplished by SIMBIOS Project:2002-2003. NASA-TM-2003-212249. Greenbelt, MD:NASA Goddard Space Flight Center
    Kwiatkowska E J, Fargion G S. 2002a. Merger of ocean color information from multiple satellite missions under the NASA SIMBIOS Project Office. Proceedings of the Fifth International Conference on Information Fusion, Annapolis, MD, USA 1:291-298
    Kwiatkowska E J, Fargion G S. 2003a. Merger of ocean color data from multiple satellite missions within the SIMBIOS project. Proceedings of the SPIE symp. Remote Sensing of the Atmosphere, Ocean, Environment, and Space Ocean Remote Sensing and Applications. Hangzhou:SPIE, 4892:168-182
    Kwiatkowska E J, Fargion G S. 2003b. Application of machine-learning techniques toward the creation of a consistent and calibrated global Chl aorophyll concentration baseline dataset using remotely sensed ocean color data. IEEE Transactions on Geoscience and Remote Sensing, 41(12):2844-2860
    Le Chengfeng, Hu Chuanmin, English D, et al. 2013. Towards a long-term Chl aorophyll-a data record in a turbid estuary using MODIS observations. Progress in Oceanography, 109:90-103
    Lee Zhongping, Carder K L, Arnone R A. 2002. Deriving inherent optical properties from water color:a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27):5755-5772
    Lee Zhongping, Lubac B, Werdell J, et al. 2010. An update of the quasi-analytical algorithm (QAA_v5)[WWW Document]. http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf
    Lee Zhongping, Shang Shaoling, Hu Chuanmin, et al. 2015. Secchi disk depth:a new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169:139-149
    Liang Xi, Wu Lixin. 20ical properties obtained from semianalytical inversions of ocean color. Applied Optics, 44(19):4074-4085
    Werdell and Bailey, 2003. The SeaWiFS bio-optical archive and Storage System (SeaBASS):Current Architecture and Implementation. NASA Tech. Memo. 2002-211617 (p. 45). Greenbelt:NASA Goddard Space Flight Center
    Zibordi G, Berthon J F, Mélin F, et al. 2009. Validation of satellite ocean color primary products at optically complex coastal sites:northern Adriatic Sea, northern Baltic Proper and Gulf of Finland. Remote Sensing of Environment, 113(12):2574-2591
    Zibordi G, Mélin F, Berthon J F. 2006. Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site. Geophysical Research Letters, 33(6):L06617, doi:10.1029/2006GL025778 based technique for producing merged spectra of water-leaving radiances from ocean color remote sensing. Applied Optics, 46(18):3856-3869
    Mélin F, Zibordi G, Djavidnia S. 2009. Merged series of normalized water leaving radiances obtained from multiple satellite missions for the Mediterranean Sea. Advances in Space Research, 43(3):423-437
    Maritorena S, d'Andon O H F, Mangin A, et al. 2010. Merged satellite ocean color data products using a bio-optical model:characteristics, benefits and issues. Remote Sensing of Environment, 114(8):1791-1804
    Maritorena S, Siegel D A. 2005. Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sensing of Environment, 94(4):429-440
    McClain C, Esaias W, Feldman G, et al. 2002. The proposal for the NASA sensor intercalibration and merger for biological and interdisciplinary oceanic studies (SIMBIOS) program, 1995.
    McClain C R. 2009. A decade of satellite ocean color observations. Annual Review of Marine Science, 1:19-42
    Mobley C D. 1994. Light and Water:Radiative Transfer in Natural Waters. New York:Academic Press.
    Mobley C D, Sundman L K. 2013. HydroLight 5.2 User's Guide. Bellevue, Washington:Sequoia Scientific, Inc.
    Morel A, Huot Y, Gentili B, et al. 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sensing of Environment, 111(1):69-88
    Murtugudde R, Beauchamp J, McClain C R, et al. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. Journal of Climate, 15(5):470-486
    Platt T, Sathyendranath S. 1988. Oceanic primary production:estimation by remote sensing at local and regional scales. Science, 241(4873):1613-1620
    Pottier C, Garcon V, Larnicol G, et al. 2006. Merging SeaWiFS and MODIS/Aqua ocean color data in north and equatorial Atlantic using weighted averaging and objective analysis. IEEE Transactions on Geoscience and Remote Sensing, 44(11):3436-3451
    Saulquin B, Gohin F, Garrello R. 2011. Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS Chl aorophyll-a data from 1998 to 2008 on the European Atlantic shelf. IEEE Transactions on Geoscience and Remote Sensing, 49(1):143-154
    Siegel D, Yoder J. 2007. Community Letter to NASA and NOAA Regarding Concerns over NPOESS Preparatory Project VⅡRS Sensor. In Ensuring the Climate Record from the NPOESS and GOES-R Spacecraft:Elements of a Strategy to Recover Measurement Capabilities Lost in Program Restructuring, N.R.C. of the N.A. Space Studies Board, ed. Washington DC:The National Academies Press, 167-169
    Sun Ling, Hu Xiuqing, Guo Maohua, et al. 2012. Multi-site calibration tracking for FY-3A MERSI solar bands. IEEE Transactions on Geoscience and Remote Sensing, 50(12):4929-4942
    Sun Ling, Guo Maohua, Zhu Jianhua, et al. 2013. FY-3A/MERSI, ocean color algorithm, products and demonstrative applications. Acta Oceanologica Sinica, 32(5):75-81
    Turpie, K. 2010. Visible Infrared Imaging Radiometer Suite (VⅡRS) Update. Presentation to NASA Ocean Color Research Team Meeting, May 11, 2010, New Orleans, Louisiana. National Aeronautics and Space Administration, Washington, DC. Wang Peng, Boss E S, Roesler C. 2005. Uncertainties of inherent opt
  • 加载中
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  32
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27

目录

    /

    返回文章
    返回