An analytical approximation of focusing-wave-induced load on a semi-submerged cylinder

HU Zhe ZHANG Xiaoying LI Yan LI Xiaowen

扈喆, 张晓莹, 李妍, 李晓文. 聚焦波作用下半浸没圆柱所受波浪载荷理论研究[J]. 海洋学报英文版, 2018, 37(7): 85-104. doi: 10.1007/s13131-018-1247-8
引用本文: 扈喆, 张晓莹, 李妍, 李晓文. 聚焦波作用下半浸没圆柱所受波浪载荷理论研究[J]. 海洋学报英文版, 2018, 37(7): 85-104. doi: 10.1007/s13131-018-1247-8
HU Zhe, ZHANG Xiaoying, LI Yan, LI Xiaowen. An analytical approximation of focusing-wave-induced load on a semi-submerged cylinder[J]. Acta Oceanologica Sinica, 2018, 37(7): 85-104. doi: 10.1007/s13131-018-1247-8
Citation: HU Zhe, ZHANG Xiaoying, LI Yan, LI Xiaowen. An analytical approximation of focusing-wave-induced load on a semi-submerged cylinder[J]. Acta Oceanologica Sinica, 2018, 37(7): 85-104. doi: 10.1007/s13131-018-1247-8

聚焦波作用下半浸没圆柱所受波浪载荷理论研究

doi: 10.1007/s13131-018-1247-8
基金项目: The National Natural Science Foundation of China under contract No. 51609101; the Natural Science Foundation of Fujian Province of China under contract Nos 2017J01701 and 2017J05085.

An analytical approximation of focusing-wave-induced load on a semi-submerged cylinder

  • 摘要: 由于畸形波的物理机制较复杂,有关畸形波-结构物相互作用的理论研究进展缓慢。然而对于较简单的畸形波模型与规则结构体,可以给出畸形波-结构物相互作用的理论解。本文基于畸形波的一种基本模型聚焦模型,采用解析方法研究其对半浸没圆柱体产生的波浪载荷。为保留畸形波的大部分特征,聚焦模型采用高斯包络描述。通过流场分隔给出绕射势,进而给出圆柱所受水平波浪力与波浪弯矩。采用适当方法简化理论公式,并与数值结果进行对比验证。此外,系统分析了聚焦程度、浸没深度与聚焦位置等参数对波浪载荷的影响。
  • Chabchoub A, Akhmediev N, Hoffmann N P. 2012a. Experimental study of spatiotemporally localized surface gravity water waves. Physical Review:E, 86:016311
    Chabchoub A, Hoffmann N P, Akhmediev N. 2011. Rogue wave observation in a water wave tank. Physical Review Letters, 106(20):204502
    Chabchoub A, Hoffmann N, Onorato M, et al. 2012b. Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Physical Review:E, 86:056601
    Deng Yanfei, Yang Jianmin, Tian Xinliang, et al. 2016. Experimental investigation on rogue waves and their impacts on a vertical cylinder using the Peregrine breather model. Ships and Offshore Structures, 11(7):757-765
    Gao Ningbo, Yang Jianmin, Zhao Wenhua, et al. 2016. Numerical simulation of deterministic freak wave sequences and wave-structure interaction. Ships and Offshore Structures, 11(8):802-817
    He J S, Zhang H R, Wang L H, et al. 2013. Generating mechanism for higher-order rogue waves. Physical Review:E, 87:052914
    Hu Zhe, Tang Wenyong, Xue Hongxiang. 2014. Time-spatial model of freak waves based on the inversion of initial disturbance. Chinese Journal of Hydrodynamics (in Chinese), 29(3):317-324
    Hu Zhe, Tang Wenyong, Xue Hongxiang, et al. 2015. Numerical study of Rogue waves as nonlinear Schrödinger breather solutions under finite water depth. Wave Motion, 52:81-90
    Hu Zhe, Xue Hongxiang, Tang Wenyong, et al. 2015a. Numerical study of nonlinear Peregrine breather under finite water depth. Ocean Engineering, 108:70-80
    Hu Zhe, Xue Hongxiang, Tang Wenyong, et al. 2015b. A combined wave-dam-breaking model for rogue wave overtopping. Ocean Engineering, 104:77-88
    Kharif C, Pelinovsky E. 2003. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics -B/Fluids, 22(6):603-634
    Kit E, Shemer L, Pelinovsky E, et al. 2000. Nonlinear wave group evolution in shallow water. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(5):221-228
    Qin Hao, Tang Wenyong, Xue Hongxiang, et al. 2017. Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluid-structure interaction method. Journal of Fluids and Structures, 74:291-305
    Onorato M, Proment D, Clauss G, et al. 2013. Rogue waves:from nonlinear Schrödinger breather solutions to sea-keeping test. PLoS ONE, 8(2):e54629
    Osborne A R, Onorato M, Serio M. 2000. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Physics Letters:A, 275(5–6):386-393
    Slunyaev A, Clauss G F, Klein M, et al. 2013. Simulations and experiments of short intense envelope solitons of surface water waves. Physics of Fluids, 25:067105
    Soares C G, Fonseca N, Pascoal R, et al. 2006. Analysis of wave induced loads on a FPSO accounting for abnormal waves. Journal of Offshore Mechanics and Arctic Engineering, 128(3):241-247
    Sundar V, Koola P M, Schlenkhoff A U. 1999. Dynamic pressures on inclined cylinders due to freak waves. Ocean Engineering, 26(9):841-863
    Weerasekara G, Maruta A. 2017. Characterization of optical rogue wave based on solitons' eigenvalues of the integrable higher-order nonlinear Schrödinger equation. Optics Communications, 382:639-645
    Yu Fajun, Yan Zhenya. 2014. New rogue waves and dark-bright soliton solutions for a coupled nonlinear Schrödinger equation with variable coefficients. Applied Mathematics and Computation, 233:351-358
    Zakharov V E, Dyachenko A I, Prokofiev A O. 2006. Freak waves as nonlinear stage of Stokes wave modulation instability. European Journal of Mechanics-B/Fluids, 25(5):677-692
  • 加载中
计量
  • 文章访问数:  754
  • HTML全文浏览量:  36
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14

目录

    /

    返回文章
    返回