Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae

WANG Shanshan ZHANG Lei CHI Shan WANG Guoliang WANG Xumin LIU Tao TANG Xuexi

王珊珊, 张磊, 池珊, 王国良, 王绪敏, 刘涛, 唐学玺. 藻类类胡萝卜素合成通路基因的系统发育分析[J]. 海洋学报英文版, 2018, 37(4): 89-101. doi: 10.1007/s13131-018-1178-4
引用本文: 王珊珊, 张磊, 池珊, 王国良, 王绪敏, 刘涛, 唐学玺. 藻类类胡萝卜素合成通路基因的系统发育分析[J]. 海洋学报英文版, 2018, 37(4): 89-101. doi: 10.1007/s13131-018-1178-4
WANG Shanshan, ZHANG Lei, CHI Shan, WANG Guoliang, WANG Xumin, LIU Tao, TANG Xuexi. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae[J]. Acta Oceanologica Sinica, 2018, 37(4): 89-101. doi: 10.1007/s13131-018-1178-4
Citation: WANG Shanshan, ZHANG Lei, CHI Shan, WANG Guoliang, WANG Xumin, LIU Tao, TANG Xuexi. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae[J]. Acta Oceanologica Sinica, 2018, 37(4): 89-101. doi: 10.1007/s13131-018-1178-4

藻类类胡萝卜素合成通路基因的系统发育分析

doi: 10.1007/s13131-018-1178-4
基金项目: The Leading Talents Program in Taishan Industry of Shandong Province under contract No. LJNY2015010; the China Agriculture Research System under contract No. CARS-50; the Regional Demonstration Project of Marine Economic Innovation and Development under contract No. 12PYY001SF08-ZGHYDX-2; the China-ASEAN Maritime Cooperation Fund.

Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae

  • 摘要: 类胡萝卜素在光吸收和光保护等过程中发挥着重要作用。与绿色植物相比,目前针对藻类类胡萝卜素合成通路基因的研究较少。本研究采用Illumina测序平台对22种海洋红藻和19种海洋褐藻进行了转录组测序,结合美国国立生物技术信息中心和美国能源部联合基因组研究所的公共数据,对藻类类胡萝卜素合成通路基因进行了系统发育分析。通过对41种海洋藻类转录组的挖掘,本研究获得了68条编码红藻类胡萝卜素合成通路基因的全长序列和79条编码褐藻类胡萝卜素合成通路基因的全长序列。基因水平转移、基因复制和基因丢失在藻类类胡萝卜合成通路的进化过程中起到了关键作用。通过基因水平转移的方式大部分藻类继承了其内共生体中类胡萝卜合成通路的基因。基因复制使得藻类转录组中出现了多个拷贝的八氢番茄红素合成酶、类胡萝卜素异构酶和番茄红素环化酶的编码基因。番茄红素ε-环化酶编码基因的丢失是单细胞红藻和褐藻细胞不含有α-类胡萝卜素的根本原因,该结果从基因水平解析了不同藻类中类胡萝卜素组成不同的机制。本研究为进一步探讨藻类类胡萝卜素合成的生理生化研究和藻类类胡萝卜素合成通路的进化提供了数据支持。
  • Bartnikas T B, Tosques I E, Laratta W P, et al. 1997. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol, 179(11): 3534-3540
    Bhattacharya D, Medlin L. 1998. Algal phylogeny and the origin of land plants. Plant Physiol, 116(1): 9-15
    Breitenbach J, Sandmann G. 2005. ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta, 220(5): 785-793
    Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol, 46(4): 347-366
    Chai Chenglin, Fang Jun, Liu Yang, et al. 2011. ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol Biol, 75(3): 211-221
    Chen Qian, Jiang Jianguo, Wang Fei. 2007. Molecular phylogenies and evolution of crt genes in algae. Crit Rev Biotechnol, 27(2): 77-91
    Chen Yu, Li Faqiang, Wurtzel E T. 2010. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol, 153(1): 66-79
    Cui Hongli, Wang Yinchu, Qin Song. 2011. Molecular evolution of lycopene cyclases involved in the formation of carotenoids in eukaryotic algae. Plant Mol Biol Rep, 29(4): 1013-1020
    Cunningham F X, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 49: 557-583
    Cunningham F X Jr, Lee H, Gantt E. 2007. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell, 6(3): 533-545
    Cunningham F X, Pogson B, Sun Zairen, et al. 1996. Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell, 8(9): 1613-1626
    Cunningham F X, Sun Zairen, Chamovitz D, et al. 1994. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell, 6(8): 1107-1121
    Dogbo O, Laferriére A, D’Harlingue A, et al. 1988. Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA, 85(19): 7054-7058
    Douzery E J P, Snell E A, Bapteste E, et al. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?.. Proc Natl Acad Sci USA, 101(43): 15386-15391
    Frigaard N U, Maresca J A, Yunker C E, et al. 2004. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol, 186(16): 5210-5220
    Giuliano G, Giliberto L, Rosati C. 2002. Carotenoid isomerase: a tale of light and isomers. Trends Plant Sci, 7(10): 427-429
    Gruszecki W I, Strzałka K. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta, 1740(2): 108-115
    Hittinger C T, Carroll S B. 2007. Gene duplication and the adaptive evolution of a classic genetic switch. Nature, 449(7163): 677-681
    Isaacson T, Ohad I, Beyer P, et al. 2004. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol, 136(4): 4246-4255
    Johnson M T J, Carpenter E J, Tian Zhijian, et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One, 7(11): e50226
    Keeling P J, Palmer J D. 2008. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 9(8): 605-618
    Klassen J L. 2010. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One, 5(6): e11257
    Krubasik P, Sandmann G. 2000. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans, 28(6): 806-810
    Ladygin V G. 2000. Biosynthesis of carotenoids in the chloroplasts of algae and higher plants. Russ J Plant Physl, 47(6): 796-814
    Li Ruiqiang, Li Yingrui, Kristiansen K, et al. 2008a. SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5): 713-714
    Li Faqiang, Murillo C, Wurtzel E T. 2007. Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol, 144(2): 1181-1189
    Li Tianyong, Ren Lei, Zhou Guan, et al. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese),(4): 64-71
    Li Faqiang, Vallabhaneni R, Wurtzel E T. 2008b. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol, 146(3): 1333-1345
    Li Huanqin, Wang Wenlei, Wang Zhaokai, et al. 2016. De novo transcriptome analysis of carotenoid and polyunsaturated fatty acid metabolism in Rhodomonas sp. J Appl Phycol, 28(3): 1649-1656
    Li Ruiqiang, Zhu Hongmei, Ruan Jue, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 20(2): 265-272
    Lichtenthaler H K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 148: 350-382
    Lohr M, Im C S, Grossman A R. 2005. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol, 138(1): 490-515
    Lund A, Andersson P, Eriksson J, et al. 2008. Automatic fitting procedures for EPR s pectra of disordered systems: matrix diagonalization and perturbation methods applied to fluorocarbon radicals. Spectrochim Acta Part A, 69(5): 1294-300
    Martin W, Herrmann R G. 1998. Gene transfer from organelles to the nucleus: how much, what happens, and why?.. Plant Physiol, 118(1): 9-17
    Martin W, Rujan T, Richly E, et al. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA, 99(19): 12246-12251
    Masamoto K, Wada H, Kaneko T, et al. 2001. Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol, 42(12): 1398-1402
    Matthews P D, Luo Ruibai, Wurtzel E T. 2003. Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-=Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot, 54(391): 2215-2230
    McFadden G I. 2001. Primary and secondary endosymbiosis and the origin of plastids. J Phycol, 37(6): 951-959
    McFadden G I. 2001. Chloroplast origin and integration. Plant Physiol, 125(1): 50-53
    Millen R S, Olmstead R G, Adams K L, et al. 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell, 13(3): 645-658
    Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35(S2): W182-W185
    Ni Ting, Yue Jipei, Sun Guiling, et al. 2012. Ancient gene transfer from algae to animals: mechanisms and evolutionary significance. BMC Evol Biol, 12: 83
    Nisar N, Li Li, Lu Shan, et al. 2015. Carotenoid metabolism in plants. Mol Plant, 8(1): 68-82
    Park H, Kreunen S S, Cuttriss A J, et al. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell, 14(2): 321-332
    Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572-1574
    Ruiz-Sola M Á, Rodríguez-Concepción M. 2012. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book, 10: e0158
    Sandmann G. 1994. Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem, 223(1): 7-24
    Sandmann G. 2002. Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant, 116(4): 431-440
    Sandmann G. 2009. Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys, 483(2): 169-174
    Sievers F, Wilm A, Dineen D, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 7: 539
    Stickforth P, Steiger S, Hess W R, et al. 2003. A novel type of lycopene ε-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4. Arch Microbiol, 179(6): 409-415
    Takaichi S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs, 9(6): 1101-1118
    Takaichi S, Yokoyama A, Mochimaru M, et al. 2016. Carotenogenesis diversification in phylogenetic lineages of Rhodophyta. J Phycol, 52(3): 329-338
    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10): 2731-2739
    Thompson J D, Gibson T J, Plewniak F, et al. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24): 4876-4882
    Timmis J N, Ayliffe M A, Huang C Y, et al. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 5(2): 123-135
    Tran D, Haven J, Qiu Weigang, et al. 2009. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta, 229(3): 723-729
    Vílchez C, Forján E, Cuaresma M, et al. 2011. Marine carotenoids: biological functions and commercial applications. Mar Drugs, 9(3): 319-333
    Walter M H, Strack D. 2011. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep, 28(4): 663-692
    Yu Qiuju, Ghisla S, Hirschberg J, et al. 2011. Plant carotene cis-trans isomerase CRTISO: a new member of the FADred-dependent flavoproteins catalyzing non-redox reactions. J Biol Chem, 286(10): 8666-8676
  • 加载中
计量
  • 文章访问数:  1256
  • HTML全文浏览量:  58
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17

目录

    /

    返回文章
    返回