Grazing and performance of the copepod Pseudodiaptomus poplesia on a Chinese strain of Aureococcus anophagefferens

HE Xuejia HAN Didi HAN Liuyu LU Songhui

何学佳, 韩棣棣, 韩留玉, 吕颂辉. 火腿伪镖水蚤对抑食金球藻中国株的摄食行为及摄食后的表现[J]. 海洋学报英文版, 2018, 37(4): 69-76. doi: 10.1007/s13131-018-1168-6
引用本文: 何学佳, 韩棣棣, 韩留玉, 吕颂辉. 火腿伪镖水蚤对抑食金球藻中国株的摄食行为及摄食后的表现[J]. 海洋学报英文版, 2018, 37(4): 69-76. doi: 10.1007/s13131-018-1168-6
HE Xuejia, HAN Didi, HAN Liuyu, LU Songhui. Grazing and performance of the copepod Pseudodiaptomus poplesia on a Chinese strain of Aureococcus anophagefferens[J]. Acta Oceanologica Sinica, 2018, 37(4): 69-76. doi: 10.1007/s13131-018-1168-6
Citation: HE Xuejia, HAN Didi, HAN Liuyu, LU Songhui. Grazing and performance of the copepod Pseudodiaptomus poplesia on a Chinese strain of Aureococcus anophagefferens[J]. Acta Oceanologica Sinica, 2018, 37(4): 69-76. doi: 10.1007/s13131-018-1168-6

火腿伪镖水蚤对抑食金球藻中国株的摄食行为及摄食后的表现

doi: 10.1007/s13131-018-1168-6
基金项目: The National Natural Science Foundation of China under contract No. 41276153; the Joint Project of National Nature Science Foundation of China-Guangdong under contract No. U1301235; the Public Science and Technology Research Funds Projects of Ocean under contract Nos 201305003-2 and 201305010-4; the Fundamental Research Funds for the Central Universities.

Grazing and performance of the copepod Pseudodiaptomus poplesia on a Chinese strain of Aureococcus anophagefferens

  • 摘要: 全球河口海域屡屡爆发褐潮,但我们对致因种抑食金球藻和浮游桡足类之间的营养关系还不甚清楚。我们就浮游桡足类火腿伪镖水蚤摄食抑食金球藻中国株的单种或混合饵料时的摄食行为和生长、发育等表现进行了研究。研究发现:火腿伪镖水蚤的无节幼体、桡足幼体和成体摄食单种抑食金球藻饵料时,摄食率和食物浓度之间的关系符合米氏方程。较之桡足类幼体和成体,无节幼体摄食抑食金球藻时的Imax(最大摄食率)值最大,同时大于其摄食中肋骨条藻的Imax值。通常情况下,火腿伪镖水蚤在摄食抑食金球藻和中肋骨条藻的混合饵料时避食抑食金球藻,但于无节幼体,这种情况并不明显。无节幼体摄食单种抑食金球藻饵料在无节幼体期末期死亡,无法进入桡足类幼体期,与饥饿状态下的个体相似。但是,饵料中抑食金球藻的存在对桡足幼体的生长无明显效应,但却极大地减少了成体的生殖率。我们的研究表明火腿伪镖水蚤无节幼体,在褐潮的控制中有潜在作用,然而,这种潜在控制作用由于桡足类种群的衰落难以持续。
  • Berggreen U, Hansen B, Kiørboe T. 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol, 99(3): 341-352,, doi: 10.1007/BF02112126
    Boak A C, Goulder R. 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar Biol, 73(2): 139-149,, doi: 10.1007/BF00406881
    Bricelj V M, Fisher N S, Guckert J B, et al. 1989. Lipid composition and nutritional value of the brown tide alga Aureococcus anophagefferens. In: Cosper E M, Bricelj V M, Carpenter E J, eds. Novel Phytoplankton Blooms. Berlin Heidelberg: Springer, 85–100
    Bricelj V M, Lonsdale D J. 1997. Aureococcus anophagefferens: causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters. Limnol Oceanogra, 42(5part2): 1023-1038,, doi: 10.4319/lo.1997.42.5_part_2.1023
    Broglio E, Saiz E, Calbet A, et al. 2004. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol, 35(1): 65-78,, doi: 10.3354/ame035065
    Brucet S, Compte J, Boix D, et al. 2008. Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Mar Ecol Prog Ser, 355: 183-191,, doi: 10.3354/meps07225
    Buskey E J, Hyatt C J. 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers. Mar Ecol Prog Ser, 126: 285-292,, doi: 10.3354/meps126285
    Buskey E J, Stockwell D A. 1993. Effects of a persistent ‘brown tide’ on zooplankton populations in the Laguna Madre of South Texas. In: Smayda T J, Shimizu Y, eds. Toxic Phytoplankton Blooms in the Sea. Amsterdam: Elsevier, 659–666
    Calbet A, Landry M R, Scheinberg R D. 2000. Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Mar Ecol Prog Ser, 193: 75-84,, doi: 10.3354/meps193075
    Carlsson P, Granéli E, Olsson P. 1990. Grazer elimination through poisoning: one of the mechanisms behind Chrysochromulina polylepis blooms?. In: Graneli E, Sundstrom B, Edler L, et al., eds. Toxic Marine Phytoplankton. New York: Elsevier, 116–122
    Cavanaugh G M. 1956. Formulae and Methods V. of the Marine Biological Laboratory Chemical Room. 5th ed. Woods Hole: Marine Biological Laboratory, 87
    Deonarine S N, Gobler C J, Lonsdale D J, et al. 2006. Role of zooplankton in the onset and demise of harmful brown tide blooms (Aureococcus anophagefferens) in US mid-Atlantic estuaries. Aquat Microb Ecol, 44(2): 181-195,, doi: 10.3354/ame044181
    Frost B W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr, 17(6): 805-815,, doi: 10.4319/lo.1972.17.6.0805
    Gainey L F Jr, Shumway S E. 1991. The physiological effect of Aureococcus anophagefferens (“brown tide”) on the lateral cilia of bivalve mollusks. Biol Bull, 181(2): 298-306,, doi: 10.2307/1542101
    Giner J L, Boyer G L. 1998. Sterols of the brown tide alga Aureococcus anophagefferens. Phytochemistry, 48(3): 475-477,, doi: 10.1016/S0031-9422(97)00860-1
    Gobler C J, Lonsdale D J, Boyer G L. 2005. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries, 28(5): 726-749,, doi: 10.1007/BF02732911
    Guillard R R L, Hargraves P E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32(3): 234-236,, doi: 10.2216/i0031-8884-32-3-234.1
    Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian J Microbiol, 8(2): 229-239
    Ivlev V S. 1961. Experimental Ecology of the Feeding of Fishes. New Haven: Yale University Press
    Jacobs J. 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev’s electivity index. Oecologia, 14(4): 413-417,, doi: 10.1007/BF00384581
    Keller M D, Bellows W K, Guillard R R L. 1989. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms. In: Cosper E M, Bricelj V M, Carpenter E J, eds. Novel Phytoplankton Blooms. Berlin Heidelberg: Springer-Verlag, 101–115
    Lonsdale D J, Cosper E M, Kim W S, et al. 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Mar Ecol Prog Ser, 134: 247-263,, doi: 10.3354/meps134247
    Martin-Creuzburg D, Von Elert E. 2009. Ecological significance of sterols in aquatic food webs. In: Arts M T, Brett M T, Kainz M, eds. Lipids in Aquatic Ecosystems. New York: Springer, 43–64
    Nejstgaard J C, Gismervik I, Solberg P T. 1997. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser, 147: 197-217,, doi: 10.3354/meps147197
    Paffenhöfer G A, Lewis K D. 1989. Feeding behavior of nauplii of the genus Eucalanus (Copepoda, Calanoida). Mar Ecol Prog Ser, 57: 129-136
    Poulet S A. 1977. Grazing of marine copepod developmental stages on naturally occurring particles. J Fish Res Board Canada, 34(12): 2381-2387
    Probyn T, Pitcher G, Pienaar R, et al. 2001. Brown tides and mariculture in Saldanha bay, South Africa. Mar Pollut Bull, 42(5): 405-408,, doi: 10.1016/S0025-326X(00)00170-3
    Smith J K, Lonsdale D J, Gobler C J, et al. 2008. Feeding behavior and development of Acartia tonsa nauplii on the brown tide alga Aureococcus anophagefferens. J Plankton Res, 30(8): 937-950,, doi: 10.1093/plankt/fbn050
    Uye S, Iwai Y, Kasahara S. 1983. Growth and production of the inshore marine copepod Pseudodiaptomus marinus in the central part of the Inland Sea of Japan. Mar Biol, 73(1): 91-98,, doi: 10.1007/BF00396289
    Zhang Qingchun, Qiu Limei, Yu Rencheng, et al. 2012. Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae, 19: 117-124,, doi: 10.1016/j.hal.2012.06.007
  • 加载中
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  78
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24

目录

    /

    返回文章
    返回