Comparison of the Arctic upper-air temperatures from radiosonde and radio occultation observations

CHANG Liang GUO Lixin FENG Guiping WU Xuerui GAO Guoping ZHANG Yang ZHANG Yu

常亮, 郭立新, 冯贵平, 吴雪睿, 高郭平, 张扬, 张瑜. 基于无线电探空和无线电掩星观测的北极上层气温研究[J]. 海洋学报英文版, 2018, 37(1): 30-39. doi: 10.1007/s13131-018-1156-x
引用本文: 常亮, 郭立新, 冯贵平, 吴雪睿, 高郭平, 张扬, 张瑜. 基于无线电探空和无线电掩星观测的北极上层气温研究[J]. 海洋学报英文版, 2018, 37(1): 30-39. doi: 10.1007/s13131-018-1156-x
CHANG Liang, GUO Lixin, FENG Guiping, WU Xuerui, GAO Guoping, ZHANG Yang, ZHANG Yu. Comparison of the Arctic upper-air temperatures from radiosonde and radio occultation observations[J]. Acta Oceanologica Sinica, 2018, 37(1): 30-39. doi: 10.1007/s13131-018-1156-x
Citation: CHANG Liang, GUO Lixin, FENG Guiping, WU Xuerui, GAO Guoping, ZHANG Yang, ZHANG Yu. Comparison of the Arctic upper-air temperatures from radiosonde and radio occultation observations[J]. Acta Oceanologica Sinica, 2018, 37(1): 30-39. doi: 10.1007/s13131-018-1156-x

基于无线电探空和无线电掩星观测的北极上层气温研究

doi: 10.1007/s13131-018-1156-x

Comparison of the Arctic upper-air temperatures from radiosonde and radio occultation observations

  • 摘要: 大气温度是研究北极气候变化的最重要参数之一。本文基于COSMIC/FORMOSAT-3 (The Constellation Observing System for Meteorology, Ionosphere, and Climate and Formosa Satellite mission 3)卫星平台的无线电掩星(RO)“湿”大气温度产品,分析了2007-2012年北极925-200 hPa的大气温度廓线变化。RO与无线电探空(RS)观测到的“湿”温度比较分析后的结果表明,时空同步的RS与COSMIC观测得到的温度在400hPa处符合的最好。利用COSMIC和均一化的RS资料进行北极气温和气温异常的分析表明,低空间分辨率的COSMIC观测资料难以准确估计北极气温的小尺度变化。此外,本文通过分析比较RS和5°×5°网格化的COSMIC温度产品在2007和2012年这2个北极海冰极小值(SIM)典型年份在400hPa的季节性温度异常后发现,大范围COSMIC观测比RS观测能更精确地反馈北极气温变化规律。通过本文研究发现,尽管COSMIC掩星观测难以精确直接给出北极大气底层的温度,但其可以精确估计北极上层气温并揭示其变化规律,可为北极气候变化研究提供重要依据。
  • Anthes R A. 2011. Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather. Atmospheric Measurement Techniques, 4(6): 1077-1103
    Ballantyne A P, Axford Y, Miller G H, et al. 2013. The amplification of arctic terrestrial surface temperatures by reduced sea-ice extent during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 386: 59-67
    Bohlinger P, Sinnhuber B M, Ruhnke R, et al. 2014. Radiative and dynamical contributions to past and future arctic stratospheric temperature trends. Atmospheric Chemistry and Physics, 14(3): 1679-1688
    Chan M A, Comiso J C. 2013. Arctic cloud characteristics as derived from MODIS, CALIPSO, and CloudSat. Journal of Climate, 26(10): 3285-3306
    Chang Liang, Gao Guoping, Jin Shuanggen, et al. 2015. Calibration and evaluation of precipitable water vapor from MODIS infrared observations at night. IEEE Transactions on Geoscience and Remote Sensing, 53(5): 2612-2620
    Das U, Pan C J. 2014. Validation of FORMOSAT-3/COSMIC level 2 "atmPrf" global temperature data in the stratosphere. Atmospheric Measurement Techniques, 7(3): 731-742
    Devasthale A, Sedlar J, Koenigk T, et al. 2013. The thermodynamic state of the arctic atmosphere observed by AIRS: comparisons during the record minimum sea ice extents of 2007 and 2012. Atmospheric Chemistry and Physics, 13(15): 7441-7450
    Devasthale A, Willén U, Karlsson K G, et al. 2010. Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmospheric Chemistry and Physics, 10(12): 5565-5572
    Durre I, Vose R S, Wuertz D B. 2006. Overview of the integrated global radiosonde archive. Journal of Climate, 19(1): 53-68
    Haimberger L. 2007. Homogenization of radiosonde temperature time series using innovation statistics. Journal of Climate, 20(7): 1377-1403
    Haimberger L, Tavolato C, Sperka S. 2012. Homogenization of the global radiosonde temperature data set through combined comparison with reanalysis background series and neighboring stations. Journal of Climate, 25(23): 8108-8131
    Hajj G A, Ao C O, Iijima B A, et al. 2004. CHAMP and SAC-C atmospheric occultation results and intercomparisons. Journal of Geophysical Research: Atmospheres, 109(D6): D06109
    Kay J E, Holland M M, Jahn A. 2011. Inter-annual to multi-decadal arctic sea ice extent trends in a warming world. Geophysical Research Letters, 38(15): L15708
    Kim B M, Son S W, Min S K, et al. 2014. Weakening of the stratospheric polar vortex by arctic sea-ice loss. Nature Communications, 5: 4646
    Kuo Y H, Sokolovskiy S V, Anthes R A, et al. 2000. Assimilation of GPS radio occultation data for numerical weather prediction. Terrestrial, Atmospheric and Oceanic Sciences, 11(1): 157-186
    Kuo Y H, Wee T K, Sokolovskiy S, et al. 2004. Inversion and error estimation of GPS radio occultation data. Journal of the Meteorological Society of Japan, 82(1B): 507-531
    Kursinski E R, Hajj G A, Schofield J T, et al. 1997. Observing earth's atmosphere with radio occultation measurements using the global positioning system. Journal of Geophysical Research: Atmospheres, 102(D19): 23429-23465
    Liu Yinghui, Key J R. 2003. Detection and analysis of clear-sky, low-level atmospheric temperature inversions with MODIS. Journal of Atmospheric and Oceanic Technology, 20(12): 1727-1737
    Liu Yinghui, Key J R, Ackerman S A, et al. 2012. Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sensing of Environment, 124: 159-173
    Liu Yinghui, Key J R, Schweiger A, et al. 2006. Characteristics of satellite-derived clear-sky atmospheric temperature inversion strength in the arctic, 1980-96. Journal of Climate, 19(19): 4902-4913
    Melles M, Brigham-Grette J, Minyuk P S, et al. 2012. 2. 8 million years of arctic climate change from Lake El'gygytgyn, NE Russia. Science, 337(6092): 315-320
    Moradi I, Soden B, Ferraro R, et al. 2013. Assessing the quality of humidity measurements from global operational radiosonde sensors. Journal of Geophysical Research: Atmospheres, 118(14): 8040-8053
    Schreiner W, Rocken C, Sokolovskiy S, et al. 2007. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophysical Research Letters, 34(4): L04808
    Stroeve J C, Markus T, Boisvert L, et al. 2014. Changes in arctic melt season and implications for sea ice loss. Geophysical Research Letters, 41(4): 1216-1225
    Sun Bimin, Reale A, Seidel D J, et al. 2010. Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. Journal of Geophysical Research: Atmospheres, 115(D23): D23104
    Sun Bomin, Reale A, Schroeder S, et al. 2013. Toward improved corrections for radiation-induced biases in radiosonde temperature observations. Journal of Geophysical Research: Atmospheres, 118(10): 4231-4243
    Titchner H A, Thorne P W, McCarthy M P, et al. 2009. Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. Journal of Climate, 22(3): 465-485
    Wang B R, Liu X Y, Wang J K. 2013. Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmospheric Measurement Techniques, 6(4): 1073-1083
    Wickert J, Reigber C, Beyerle G, et al. 2001. Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophysical Research Letters, 28(17): 3263-3266
    Xie F, Wu D L, Ao C O, et al. 2010. Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophysical Research Letters, 37(11): L11805
    Yunck T P, Liu Chaohan, Ware R. 1999. A history of GPS sounding. Terrestrial, Atmospheric and Oceanic Science, 11(1): 1-20
  • 加载中
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  64
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-15

目录

    /

    返回文章
    返回