Variability in the empirical leucine-to-carbon conversion factors along an environmental gradient

LI Xiangfu XU Jie SHI Zhen LI Qian LI Ruihuan

李祥付, 徐杰, 施震, 李芊, 李瑞环. 亮氨酸与碳转换系数在环境梯度下的变化特征[J]. 海洋学报英文版, 2018, 37(4): 77-82. doi: 10.1007/s13131-018-1144-1
引用本文: 李祥付, 徐杰, 施震, 李芊, 李瑞环. 亮氨酸与碳转换系数在环境梯度下的变化特征[J]. 海洋学报英文版, 2018, 37(4): 77-82. doi: 10.1007/s13131-018-1144-1
LI Xiangfu, XU Jie, SHI Zhen, LI Qian, LI Ruihuan. Variability in the empirical leucine-to-carbon conversion factors along an environmental gradient[J]. Acta Oceanologica Sinica, 2018, 37(4): 77-82. doi: 10.1007/s13131-018-1144-1
Citation: LI Xiangfu, XU Jie, SHI Zhen, LI Qian, LI Ruihuan. Variability in the empirical leucine-to-carbon conversion factors along an environmental gradient[J]. Acta Oceanologica Sinica, 2018, 37(4): 77-82. doi: 10.1007/s13131-018-1144-1

亮氨酸与碳转换系数在环境梯度下的变化特征

doi: 10.1007/s13131-018-1144-1
基金项目: The National Key Research and Development Program under contract No. 2016YFA0601203; the National Natural Science Foundation of China under contract Nos 41476137 and 41676075; the Project of State Key Laboratory of Tropical Oceanography under contract No. LTOZZ1504-1; the Hundred Talent Program of Chinese Academy of Sciences under contract No. Y35L041001.

Variability in the empirical leucine-to-carbon conversion factors along an environmental gradient

  • 摘要: 细菌生产力是评价细菌在海洋碳循环中作用的关键参数之一。估算细菌生产力需要亮氨酸与碳转换系数,而该系数在环境中的变化范围很大,由于实测亮氨酸与碳转化系数耗时耗力,很少有研究者现场实测该系数,致使我们对该系数的调控机制的认识相当缺乏。2015年5月至2016年1月期间,我们在珠江口及南海北部近岸海域开展了14个稀释培养实验,以揭示亮氨酸与碳转换系数在该海域的变化特征,探究环境因素对该系数的调控机制。我们发现,亮氨酸与碳转换系数在该海域呈现明显的空间变化特征,该系数在低盐海域(盐度<15)最高1.27-1.69(kg C)/(mol Leu),中盐度海域(15 < 盐度 < 25)次之1.03-1.25(kg C)/(mol Leu),在高盐海域(盐度>25)最低0.48-0.85(kg C)/(mol Leu)。该系数的空间变化受营养物质供应调控,在寡营养海域,细菌生长受营养限制,部分亮氨酸被用于呼吸作用获取能量以保证生存,进而降低了该区域亮氨酸与碳转换系数。因此,准确估算细菌生产力,实测相应亮氨酸与碳转换系数是必不可少的。
  • Agusti S, Duarte C M, Vaque D, et al. 2001. Food-web structure and elemental (C, N and P) fluxes in the eastern tropical North Atlantic. Deep-Sea Research Part Ⅱ, 48: 2295-2321
    Alonso-Sáez L, Gasol J M, Arístegui J, et al. 2007. Large-scale variability in surface bacterial carbon demand and growth efficiency in the subtropical northeast Atlantic Ocean. Limnology and Oceanography, 52(2): 533-546
    Alonso-Sáez L, Pinhassi J, Pernthaler J, et al. 2010. Leucine-to-carbon empirical conversion factor experiments: does bacterial community structure have an influence?.. Environmental Microbiology, 12(11): 2988-2997
    Baptista I, Santos A L, Cunha Â, et al. 2011. Bacterial biomass production in an estuarine system: high variability of leucine conversion factors and changes in bacterial community structure during incubation. Aquatic Microbial Ecology, 62(3): 299-310
    Carlson C A, del Giorgio P A, Herndl G J. 2007. Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography, 20(2): 89-100
    Dai Minghan, Guo Xianghui, Zhai Weidong, et al. 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 102(1–2): 159-169
    Dai Minghan, Zhai Weidong, Cai Weijun, et al. 2008. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Continental Shelf Research, 28(12): 1416-1423
    del Giorgio P A, Condon R, Bouvier T, et al. 2011. Coherent patterns in bacterial growth, growth efficiency, and leucine metabolism along a northeastern Pacific inshore-offshore transect. Limnology and Oceanography, 56(1): 1-16
    Ducklow H W, Kirchman D L, Quinby H L. 1992. Bacterioplankton cell growth and macromolecular synthesis in seawater cultures during the North Atlantic Spring Phytoplankton Bloom, May, 1989. Microbial Ecology, 24(2): 125-144
    Franco-Vidal L, Morán X A G. 2011. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics. Microbial Ecology, 61(2): 328-341
    Fuhrman J A, Azam F. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology, 39(6): 1085-1095
    Fuhrman J. 1992. Bacterioplankton roles in cycling of organic matter: the microbial food web. In: Falkowski P G, Woodhead A D, Vivirito K, eds. Primary Productivity and Biogeochemical Cycles in the Sea. New York: Plenum, 361–383
    Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. 3rd ed. Weinheim: WILEY-VCH Verlag GmbH, 159–226
    He Biyan, Dai Minghan, Zhai Weidong, et al. 2010. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China. Marine Chemistry, 119(1–4): 52-64
    Kirchman D, K’Nees E, Hodson R. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology, 49(3): 599-607
    Kirchman D L, Ducklow H W. 1993. Estimating conversion factors for the thymidine and leucine methods for measuring bacterial production. In: Kemp P F, Sherr B F, Sherr E B, et al., eds. Handbook of Methods in Aquatic Microbial Ecology. Boca Raton, FL: Lewis Publishing, 513–517
    Knap A H, Michaels A, Close A R, et al. 1996. Protocols for the joint global ocean flux study (JGOFS) core measurements. JGOFS Report NO. 19. Reprint of the IOC Manuals and Guides No. 29. Paris: UNESCO
    Lee S, Fuhrman J A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53(6): 1298-1303
    Li Q P, Hansell D A. 2008. Nutrient distributions in baroclinic eddies of the oligotrophic North Atlantic and inferred impacts on biology. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 55(10): 1291-1299
    Li Q P, Hansell D A, Zhang J Z. 2008. Underway monitoring of nanomolar nitrate plus nitrite and phosphate in oligotrophic seawater. Limnology and Oceanography: Methods, 6(7): 319-326
    Mandelstam J. 1958. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochemical Journal, 69(1): 110-119
    Marie D, Partensky F, Jacquet S, et al. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology, 63(1): 186-193
    McManus G B, Fuhrman J A. 1988. Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiologia, 159(1): 51-62
    Morán X A G, Fernández E, Pérez V. 2004. Size-fractionated primary production, bacterial production and net community production in subtropical and tropical domains of the oligotrophic NE Atlantic in autumn. Marine Ecology Progress Series, 274: 17-29
    Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamum Press
    Pulido-Villena E, Reche I. 2003. Exploring bacterioplankton growth and protein synthesis to determine conversion factors across a gradient of dissolved organic matter. Microbial Ecology, 46(1): 33-42
    Servais P. 1990. Estimation of bacterial production in marine ecosystems from the measurement of the protein-synthesis rate. Oceanologic Acta (in French), 13(8): 229-235
    Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series, 51(3): 201-213
    Smith D C, Azam F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs, 6(2): 107-114
    Teira E, Hernando-Morales V, Cornejo-Castillo F M, et al. 2015. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world’s oceans. Applied and Environmental Microbiology, 81(23): 8224-8232
    Xu Jie, Jing Hongmei, Sun Mingming, et al. 2013. Regulation of bacterial metabolic activity by dissolved organic carbon and viruses. Journal of Geophysical Reseach: Biogeosciences, 118(4): 1573-1583
    Xu Jie, Yin Kedong, He Lei, et al. 2008. Phosphorus limitation in the northern South China Sea during late summer: influence of the Pearl River. Deep Sea Research Part I: Oceanographic Research Papers, 55(10): 1330-1342
    Yin Kedong, Qian Peiyuan, Wu M C S, et al. 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology Progess Series, 221: 17-28
  • 加载中
计量
  • 文章访问数:  928
  • HTML全文浏览量:  46
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10

目录

    /

    返回文章
    返回