Investigation of Arctic air temperature extremes at north of 60°N in winter

SUI Cuijuan ZHANG Zhanhai YU Lejiang LI Yi SONG Mirong

隋翠娟, 张占海, 于乐江, 李熠, 宋米荣. 60°N以北冬季极端温度事件趋势分析[J]. 海洋学报英文版, 2017, 36(11): 51-60. doi: 10.1007/s13131-017-1137-5
引用本文: 隋翠娟, 张占海, 于乐江, 李熠, 宋米荣. 60°N以北冬季极端温度事件趋势分析[J]. 海洋学报英文版, 2017, 36(11): 51-60. doi: 10.1007/s13131-017-1137-5
SUI Cuijuan, ZHANG Zhanhai, YU Lejiang, LI Yi, SONG Mirong. Investigation of Arctic air temperature extremes at north of 60°N in winter[J]. Acta Oceanologica Sinica, 2017, 36(11): 51-60. doi: 10.1007/s13131-017-1137-5
Citation: SUI Cuijuan, ZHANG Zhanhai, YU Lejiang, LI Yi, SONG Mirong. Investigation of Arctic air temperature extremes at north of 60°N in winter[J]. Acta Oceanologica Sinica, 2017, 36(11): 51-60. doi: 10.1007/s13131-017-1137-5

60°N以北冬季极端温度事件趋势分析

doi: 10.1007/s13131-017-1137-5
基金项目: 南北极环境综合考察专项-极地对全球和我国气候变化影响的综合评价(CHINARE2016-04-04);海洋公益性行业科研专项项目(201505013);国家自然科学基金(41576029)

Investigation of Arctic air temperature extremes at north of 60°N in winter

  • 摘要: 温度是反映气候变化的一个重要指标。极端温度事件会严重影响人类的自然环境和社会活动。本文我们进行了60°N以北的冬季极端温度事件分析,利用GSOD(global summary of the day)1979-2015年共238个站点的日数据,分析1979-2015年期间冬季冷日、冷夜、暖日及暖夜的趋势,结果显示:北极区域冷日和冷夜趋势在下降(速率为-2到-3天/十年),暖日和暖夜趋势在上升(速率为+2到+3天/十年)。温度均值的上升导致暖(冷)日、暖(冷)夜的增加(减少),而大部分站点温度方差的减少引起极端冷事件减少。AO正位相导致北欧及俄罗斯西部区域暖日、暖夜增加,冷日、冷夜减少,白令海峡及格陵兰岛附近冷日、冷夜增加,暖日、暖夜减少;而秋季北极海冰范围偏少时冷日、冷夜趋势会下降。利用M-K突变方法检测到加拿大区域冷夜在1998年发生过突变,欧亚大陆西北部暖夜在1988年发生过突变。突变主要是由于偏南风及北大西洋海温升高引起的温度均值上升引起。
  • ?Brown P J, Bradley R S, Keimig F T. 2010. Changes in extreme climate indices for the northeastern United States, 1870-2005. Journal of Climate, 23(24):6555-6572
    Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9):627-637
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanaly-sis:configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656):553-597
    Easterling D R, Meehl G A, Parmesan C, et al. 2000. Climate extremes:observations, modeling, and impacts. Science, 289(5487):2068-2074
    Francis J A, Chan Weihan, Leathers D J, et al. 2009. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophysical Research Letters, 36(7):L07503
    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6):L06801
    Francis J A, Vavrus S J. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10(1):014005
    Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3):193-212
    Huang Danqing, Qian Yongfu. 2008. The definition of daily mean temperature extremes over China and its trend. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 47(3):112-116
    Kendall M G. 1955. Rank Correlation Methods. Griffin, London:Charles Griffin
    Kodra E, Ganguly A R. 2014. Asymmetry of projected increases in extreme temperature distributions. Scientific Reports, 4:5884
    Long Di, Scanlon B R, Fernando D N, et al. 2012. Are temperature and precipitation extremes increasing over the U.S. High Plains?.. Earth Interactions, 16(16):1-20
    Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3):245-259
    Matthes H, Rinke A, Dethloff K. 2015. Recent changes in Arctic temperature extremes:warm and cold spells during winter and summer. Environmental Research Letters, 10(11):114020
    Overland J E, Wang Muyin, Walsh J E, et al. 2013. Future Arctic climate changes:adaptation and mitigation time scales. Earths Future, 2(2):68-74
    Overland J E, Wood K R, Wang Muyin. 2011. Warm Arctic-cold continents:climate impacts of the newly open arctic sea. Polar Research, 30(1):15787
    Rennert K J, Roe G, Putkonen J, et al. 2009. Soil thermal and ecological impacts of rain on snow events in the circumpolar Arctic. Journal of Climate, 22(9):2302-2315
    Robeson S M. 2004. Trends in time-varying percentiles of daily minimum and maximum temperature over North America. Geophysical Research Letters, 31(4):L04203
    Screen J A. 2014. Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nature Climate Change, 4(7):577-582
    Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification:a research synthesis. Global and Planetary Change, 77(1–2):85-96
    Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic's rapidly shrinking sea ice cover:a research synthesis. Climatic Change, 110(3–4):1005-1027
    Tang Qiuhong, Zhang Xuejun, Yang Xiaohua, et al. 2013. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1):014036
    Vincent L A, Peterson T C, Barros V R, et al. 2005. Observed trends in indices of daily temperature extremes in South America 1960-2000. Journal of Climate, 18(23):5011-5023
    Wang Yongmei, Zhang Hongyu, Guo Xue, et al. 2012. Study on the change of extreme events of high-temperature and heavy-precipitation in Shanxi Province in recent 48 Years. Arid Zone Research (in Chinese), 29(2):289-295
    Yang Hui, Chen Xinrong, Yang Guiying. 2016. Relationship between extensive and persistent extreme cold events in China and stratospheric circulation anomalies. Satellite Oceanography and Meteorology, 1(1):68-82
    Yu Lejiang, Sui Cuijuan, Lenschow D H, et al. 2017. The relationship between wintertime extreme temperature events north of 60°N and large-scale atmospheric circulations. International Journal of Climatology, 37(suppl1), doi: 10.1002/joc.5024
    Yu Lejiang, Zhong Shiyuan, Pei Lisi, et al. 2016. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States. Environmental Research Letters, 11(4):044003
  • 加载中
计量
  • 文章访问数:  952
  • HTML全文浏览量:  43
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-07-03

目录

    /

    返回文章
    返回