Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicus

XING Lili SUN Lina LIU Shilin LI Xiaoni MIAO Ting ZHANG Libin YANG Hongsheng

邢丽丽, 孙丽娜, 刘石林, 李晓妮, 缪婷, 张立斌, 杨红生. 白刺参,浅青刺参,深青刺参和紫刺参色素组成及黑色素含量的比较分析[J]. 海洋学报英文版, 2017, 36(12): 45-51. doi: 10.1007/s13131-017-1056-5
引用本文: 邢丽丽, 孙丽娜, 刘石林, 李晓妮, 缪婷, 张立斌, 杨红生. 白刺参,浅青刺参,深青刺参和紫刺参色素组成及黑色素含量的比较分析[J]. 海洋学报英文版, 2017, 36(12): 45-51. doi: 10.1007/s13131-017-1056-5
XING Lili, SUN Lina, LIU Shilin, LI Xiaoni, MIAO Ting, ZHANG Libin, YANG Hongsheng. Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicus[J]. Acta Oceanologica Sinica, 2017, 36(12): 45-51. doi: 10.1007/s13131-017-1056-5
Citation: XING Lili, SUN Lina, LIU Shilin, LI Xiaoni, MIAO Ting, ZHANG Libin, YANG Hongsheng. Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicus[J]. Acta Oceanologica Sinica, 2017, 36(12): 45-51. doi: 10.1007/s13131-017-1056-5

白刺参,浅青刺参,深青刺参和紫刺参色素组成及黑色素含量的比较分析

doi: 10.1007/s13131-017-1056-5

Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicus

  • 摘要: 刺参,Apostichopus japonicus(Selenka),是中国具有重要商业价值的海洋生物。在中国不同色型的刺参中,白刺参和紫刺参最具吸引力。鉴定出不同色型刺参体色形成的关键色素,将为目标色型刺参的养殖提供科学依据。在本研究中,实验用刺参根据它们的体色被分为四类:白刺参,浅青刺参,深青刺参,紫刺参。四类颜色刺参的色素组成和含量采用高压液相色谱(HPLC)技术进行分析。研究结果表明,四类刺参的色素含量具有显著差异,且白刺参的色素种类少于其他颜色刺参。在白刺参中,只检测到了鸟嘌呤和蝶酸,这两种色素是结构色,并且存在于其他颜色刺参中。除了蝶酸,其他检测到的色素皆为在紫刺参中含量最高。生物色黑色素、虾青素、β-胡萝卜素和叶黄素可在浅青、深青、紫刺参中检测到,而生物色黄体酮和番茄红素在所有色型的刺参中都未检测到。黑色素是体色形成中的一种关键色素,其含量随着刺参体色的加深而增加。透射电子显微镜分析发现,白刺参体壁中表皮黑色素细胞最少,且其黑色素细胞中含有较少的黑素体,包括无黑色素的前黑素体。随着刺参体色的加深,黑色素颗粒的含量也随之增加。在深青刺参和紫刺参中还发现,其黑色素颗粒分泌到细胞外。本研究对于发现白、浅青、深青、紫刺参颜色差异的主要原因具有重要意义,并为刺参体色形成的深入研究提供了基础。
  • Bai Yucen, Zhang Libin, Liu Shilin, et al. 2015. The effect of salinity on the growth, energy budget and physiological performance of green, white and purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture, 437: 297-303
    Chen Jiaxin. 2003. Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Inf Bull, 18: 18-23
    Choe S, Ohshima Y. 1961. On the morphological and ecological differences between two commercial forms, “Green” and “Red”, of the Japanese common sea cucumber, Stichopus japonicus Selenka. Nipp Suis Gakka, 27: 97-105
    Guerin M, Huntley M E, Olaizola M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol, 21(5): 210-216
    Hurbain I, Geerts W J C, Boudier T, et al. 2008. Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad Sci U S A, 105(50): 19726-19731
    Jiang Senhao, Dong Shuanglin, Gao Qinfeng, et al. 2013. Comparative study on nutrient composition and growth of green and red sea cucumber, Apostichopus japonicus (Selenka, 1867), under the same culture conditions. Aquac Res, 44(2): 317-320
    Kanno M, Kijima A. 2002. High genetic variability of isozymes in Japanese sea cucumber Stichopus japonicus. Fish Genet Breed Sci, 3: 7-12
    Kan-No M, Kijima A. 2003. Genetic differentiation among three color variants of Japanese sea cucumber Stichopus japonicus. Fish Sci, 69(4): 806-812
    Kanno M, Li Qi, Kijima A. 2005. Isolation and characterization of twenty microsatellite loci in Japanese sea cucumber (Stichopus japonicus). Mar Biotechnol, 7(3): 179-183
    Kanno M, Suyama Y, Li Qi, et al. 2006. Microsatellite analysis of Japanese sea cucumber, Stichopus (Apostichopus) japonicus, supports reproductive isolation in color variants. Mar Biotechnol, 8(6): 672-685
    King R A, Hearing V J, Creel D J, et al. 2001. Albinism. In: Scriver C R, Beaudet A L, Sly W S, et al., eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 4353-4392
    Levy-Lior A, Shimoni E, Schwartz O, et al. 2010. Guanine-based biogenic photonic-crystal arrays in fish and spiders. Adv Funct Mater, 20(2): 320-329
    Liu Xiaodong, Chen Zaizhong. 2008. Pigment cells and body color regulation of fish. Fish Sci Technol Inf (in Chinese), 35(1): 13-18
    Lu Yanjie, Yao Huiyuan. 2003. Advances in physiological functions of lutein and zeaxanthin. Food Ferment Ind (in Chinese), 29(2): 81-85
    Nielsen K P, Zhao Lu, Stamnes J J, et al. 2006. The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. J Photochem Photobiol B Biol, 82(3): 194-198
    Nishimura S. 1995. Guide to Seashore Animals of Japan with Color Pictures and Keys (in Japanese). Osaka: Hoikusha, 310-373
    Parker A R. 2000. 515 million years of structural colour. J Opt A Pure Appl Opt, 2(6): R15-R28
    Prota G, Thomson R H. 1976. Melanin pigmentation in mammals. Endeavour, 35(224): 32-38
    Raposo G, Marks M S. 2007. Melanosomes—dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol, 8(10): 786-797
    Różanowska M, Sarna T, Land E J, et al. 1999. Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Rad Biol Med, 26(5-6): 518-525
    Sang C. 1990. Biology of the Japanese common sea cucumber Stichopus japonicus Selenka (in Japanese) [dissertation]. Pusan: Pusan National University
    Sarna T, Burke J M, Korytowski W, et al. 2003. Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res, 76(1): 89-98
    Sarna T, Menon I A, Sealy R C. 1985. Photosensitization of melanins: a comparative study. Photochem Photobiol, 42(5): 529-532
    Scalia M, Geremia E, Corsaro C, et al. 1990. Lipid peroxidation in pigmented and unpigmented liver tissues: protective role of melanin. Pigment Cell Res, 3(2): 115-119
    Schiaffino M V. 2010. Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol, 42(7): 1094-1104
    Seiji M, Fitzpatrick T B, Simpson R T. 1963. Chemical composition and terminology of specialized organelles (melanosomes and melanin granules) in mammalian melanocytes. Nature, 197(4872): 1082-1084
    Slominski A, Tobin D J, Shibahara S, et al. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 84(4): 1155-1228
    Streelman J T, Peichel C L, Parichy D M. 2007. Developmental genetics of adaptation in fishes: the case for novelty. Ann Rev Ecol Evol Syst, 38(1): 655-681
    Wakamatsu K, Ito S. 2002. Advanced chemical methods in melanin determination. Pigment Cell Res, 15(3): 174-183
    Xu Dongxue, Sun Lina, Liu Shilin, et al. 2015. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus. Fish Shellfish Immunol, 45(2): 321-326
    Yu Guoyong. 1996. The mechanism of animal body color change. Bull Biol (in Chinese), 31(11): 22-24
    Zaręba M, Bober A, Korytowski W, et al. 1995. The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochim Biophys Acta, 1271(2-3): 343-348
    Zhang Wei, Cao Zhengfei, Li Yuchun, et al. 2015. Taxonomic status of the three color variants in sea cucumber (Apostichopus japonicus): evidence from mitochondrial phylogenomic analyses. Mitochondrial DNA A, 27(4): 2330-2333
    Zhu Xiuling, Che Zhenming, Xu Wei, et al. 2005. The advancement of the physiological Functions and extraction technology of β-carotene. J Xihua Univ (Nat Sci) (in Chinese), 24(1): 71-76
  • 加载中
计量
  • 文章访问数:  1244
  • HTML全文浏览量:  84
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-21

目录

    /

    返回文章
    返回