Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment

PRIYA Chokkalingam ARAVIND Ganessin THILAGARAJ Wilson Richard

PRIYAChokkalingam, ARAVINDGanessin, THILAGARAJWilsonRichard. Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment[J]. 海洋学报英文版, 2017, 36(6): 89-94. doi: 10.1007/s13131-017-1045-8
引用本文: PRIYAChokkalingam, ARAVINDGanessin, THILAGARAJWilsonRichard. Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment[J]. 海洋学报英文版, 2017, 36(6): 89-94. doi: 10.1007/s13131-017-1045-8
PRIYA Chokkalingam, ARAVIND Ganessin, THILAGARAJ Wilson Richard. Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment[J]. Acta Oceanologica Sinica, 2017, 36(6): 89-94. doi: 10.1007/s13131-017-1045-8
Citation: PRIYA Chokkalingam, ARAVIND Ganessin, THILAGARAJ Wilson Richard. Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment[J]. Acta Oceanologica Sinica, 2017, 36(6): 89-94. doi: 10.1007/s13131-017-1045-8

Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment

doi: 10.1007/s13131-017-1045-8

Prevalence of Bacillus sp. among the biofilm forming community on Ti surface in marine environment

  • 摘要: Prevalence of bacterial species involved in biomineralization of manganese on titanium (Ti) surfaces in marine environment was revealed in this research work. This study involves one year sea water exposure of Ti and their periodical biofilm characterization was carried out to quantify the manganese oxidizing bacterial (MOB) presence in the biofilm formed on titanium surfaces. The total viable count study of Ti coupons exposed to sea water for one year resulted in 60% of the MOB in overall biofilm population. The biochemical characterization of MOB isolates were performed for the genus level identification of the seven bacterial isolates. Further, the seven strains were subjected to 16S rRNA gene sequencing. Evolutionary analysis was performed using MEGA 7 to obtain closely related strains within the groups. The manganese oxidizing ability of the bacterial isolates were determined with Leucoberbelin Blue Assay (LBB) and Atomic Absorption Spectroscopy studies (AAS). The results show that among the isolated marine MOB species, Bacillus sp. and Leptothrix sp. have the maximum Mn oxidizing property. The microtitre plate assay was performed to determine the biofilm forming ability of the isolated marine MOB species. All the results have confirmed the prevalence of Bacillus sp. among the biofilm colonizers on Ti surfaces when exposed in sea water.
  • Aneja K R. 2003. Staining and biochemical techniques. In:Aneja K R, ed. Experiments in Microbiology, Plant Pathology and Biotechnology. New Delhi:New Age International CPJ Ltd, 245-275
    Bargar J R, Tebo B M, Bergmann U, et al. 2005. Biotic and abiotic products of Mn(Ⅱ) oxidation by spores of the marine Bacillus sp. strain sg-1. American Mineralogist, 90(1):143-154
    Brankevich G, Bastida R, Lemmi C. 1988. A comparative study of biofouling settlements in different sections of Necochea power plant (Quequen port, Argentina). Biofouling, 1(2):113-135
    Cappucino J G, Sherman N. 1996. Microbiology—A Laboratory Manual. New York:The Benjamin/Cummings Publishing Company, Inc, 129-182
    Characklis W G. 1984. Biofilm development:a process analysis. In:Marshall K C, ed. Microbial Adhesion and Aggregation. Berlin Heidelberg:Springer, 137-157
    DePalma S R. 1993. Manganese oxidation by Pseudomonas putida[dissertation]. Cambridge, Massachusetts:Harvard University
    Dhami N K, Reddy S M, Mukherjee A. 2012. Biofilm and microbial applications in biomineralized concrete. In:Seto J, ed. Advanced Topics in Biomineralization. Rijeka:InTech, 137-164
    Dickinson W, Caccavo F, Olesen B H, et al. 1997. Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophora. Applied and Environmental Microbiology, 63(7):2502-2506
    Dickinson W H, Lewandowski Z. 1996. Manganese biofouling and the corrosion behavior of stainless steel. Biofouling, 10(1-3):79-93
    Gopal J, Muraleedharan P, Sarvamangala H, et al. 2008. Biomineralisation of manganese on titanium surfaces exposed to seawater. Biofouling, 24(4):275-282
    Johnston C G, Kipphut G W. 1988. Microbially mediated Mn(Ⅱ) oxidation in an oligotrophic arctic lake. Applied and Environmental Microbiology, 54(6):1440-1445
    Judy G. 2006. Surface modification of titanium to control microbial fouling[dissertation]. Tamilnadu, India:Madras University
    Kolari M. 2003. Attachment mechanisms and properties of bacterial biofilms on non-living surfaces[dissertation]. Helsinki, Finland:University of Helsinki
    Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7):1870-1874
    O'Toole G A. 2011. Microtiter dish biofilm formation assay. Journal of Visualized Experiments, (47):2437
    Palanichamy S, Maruthamuthu S, Manickam S T, et al. 2002. Microfouling of manganese-oxidizing bacteria in Tuticorin harbour waters. Current Science, 82(7):865-869
    Palmer M R, Turekian K K. 1986. 187Os/186Os in marine manganese nodules and the constraints on the crustal geochemistries of Rhenium and Osmium. Nature, 319(6050):216-220
    Priya C, Aravind G, Thilagaraj W R. 2014. Anti-biofouling studies of surface modified titanium coated with silver nanoparticles for condenser application. Research Journal of Chemistry and Environment, 18(11):76-83
    Priya C, Aravind G, Thilagaraj W R. 2016. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions. Bulletin of Materials Science, 39(2):345-351
    Rosson R A, Nealson K H. 1982. Manganese binding and oxidation by spores of a marine bacillus. Journal of Bacteriology, 151(2):1027-1034
    Sarvamangala H, Gopal J, Muraleedharan P, et al. 2008. Biomineralization of manganese by Bacillus spp. isolated from a marine biofilm. Minerals and Metallurgical Processing, 25(3):149-155
    Satpathy K K. 1990. Biofouling control measures in power plants—a brief over view. In:Proceedings of Specialists Meeting on Marine Biodeterioration with Special Reference to Power Plant Cooling Systems. Kalpakkam, Tamil Nadu, India:WSCL, 153-166
    Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3):512-526
    ZoBell C E. 1946. Marine Microbiology:A Monograph on Hydrobacteriology. Waltham, MA:Chronica Botanica Company, 240.
  • 加载中
计量
  • 文章访问数:  557
  • HTML全文浏览量:  49
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-20
  • 修回日期:  2016-11-14

目录

    /

    返回文章
    返回