Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study

SHU Qi QIAO Fangli SONG Zhenya XIAO Bin

舒启, 乔方利, 宋振亚, 肖斌. 北极径流增加对大西洋经向翻转环流影响的模拟研究[J]. 海洋学报英文版, 2017, 36(8): 59-65. doi: 10.1007/s13131-017-1009-z
引用本文: 舒启, 乔方利, 宋振亚, 肖斌. 北极径流增加对大西洋经向翻转环流影响的模拟研究[J]. 海洋学报英文版, 2017, 36(8): 59-65. doi: 10.1007/s13131-017-1009-z
SHU Qi, QIAO Fangli, SONG Zhenya, XIAO Bin. Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study[J]. Acta Oceanologica Sinica, 2017, 36(8): 59-65. doi: 10.1007/s13131-017-1009-z
Citation: SHU Qi, QIAO Fangli, SONG Zhenya, XIAO Bin. Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study[J]. Acta Oceanologica Sinica, 2017, 36(8): 59-65. doi: 10.1007/s13131-017-1009-z

北极径流增加对大西洋经向翻转环流影响的模拟研究

doi: 10.1007/s13131-017-1009-z
基金项目: The Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No. CHINARE2016-04-04; the National Natural Science Foundation of China under contract No. 41406027; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1406404; the Basic Research Operating Funds of The First Institute of Oceanography, State Oceanic Administration of China under contract Nos 2015P03 and 2015P01.

Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study

  • 摘要: 观测显示过去几十年间北极入海径流呈现增加趋势,CMIP5耦合模式预测表明21世纪北极入海径流仍会增加,在RCP8.5路径下,21世纪末北极入海径流量将会是1950年的1.4倍。本文利用冰-海耦合数值模式研究了北极径流增加对大西洋经向翻转环流的影响。基于两个数值实验的结果表明,如果北极入海径流按每年0.22%的速度(与RCP8.5路径下的速度相当)增加,大西洋经向翻转环流的强度在100、150和200年后将会分别减弱0.6(3%)、1.2(7%)和1.8(11%) Sv。北极入海径流增加导致大西洋经向翻转环流减弱的主要原因是,北极入海径流增加的淡水被输运到北大西洋后,会抑制北大西洋深层水的生成,这也会导致北大西洋深层水海水年龄的增加。
  • Bryden H L, Longworth H R, Cunningham S A. 2005. Slowing of the atlantic meridional overturning circulation at 25°N. Nature, 438(7068):655-657
    Cheng Wei, Chiang J C H, Zhang Dongxiao. 2013. Atlantic meridional overturning circulation (AMOC) in CMIP5 models:RCP and historical simulations. Journal of Climate, 26(18):7187-7197
    Dai Aiguo, Qian Taotao, Trenberth K E, et al. 2009. Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate, 22(10):2773-2792
    Fichot C G, Kaiser K, Hooker S B, et al. 2013. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Scientific reports, 3:1053
    England M H. 1995. The age of water and ventilation timescales in a global ocean model. Journal of Physical Oceanography, 25(11):2756-2777
    Griffies S M. 2012. Elements of the modular ocean model (MOM):2012 release. GFDL Ocean Group Technical Report No. 7. Princeton, NJ:NOAA/Geophysical Fluid Dynamics Laboratory, 618. http://mom-ocean.org/web/docs/project/MOM5_elements.pdf[2014-11-19/2015-7-15]
    Griffies S M, Biastoch A, Böning C, et al. 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1-2):1-46
    Huang N E, Shen Zheng, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 454(1971):903-905
    Kattsov V M, Walsh J E, Chapman W L, et al. 2007. Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. Journal of Hydrometeorology, 8(3):571-589
    Large W G, Yeager S G. 2009. The global climatology of an interannually varying air-sea flux data set. Climate Dynamics, 33(2-3):341-364
    Li P X. 2009. Dominant climate factors influencing the Arctic runoff and association between the runoff and Arctic sea ice (in Chinese)[dissertation]. Qingdao:Ocean Univercity of China
    Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379):66-70
    Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601):2171-2173
    Rennermalm A K, Wood E F, Déry S J, et al. 2006. Sensitivity of the thermohaline circulation to Arctic Ocean runoff. Geophysical Research Letters, 33(12), doi: 10.1029/2006GL026124
    Serreze M C, Barrett A P, Slater A G, et al. 2006. The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research, 111(C11), doi: 10.1029/2005JC003424
    Serreze M C, Barry R G. 2005. The Arctic Climate System. Cambridge:Cambridge University Press
    Srokosz M A, Bryden H L. 2015. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348(6241):1255575
    Stouffer R J, Yin J, Gregory J M, et al. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19(8):1365-1387
    Sui Cuijuan, Zhang Zhanhai, Liu Jiping, et al. 2008. Variation of Arctic runoff and its association with climate factors. Haiyang Xuebao (in Chinese), 30(4):39-47
    Survey U. 2012. Atlantic meridional overturning circulation. http://www.eoearth.org/view/article/150290[2010-3-2/2015-4-6]
    Winton M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17(4):525-531
    Wu Zhaohua, Huang N E. 2009. Ensemble empirical mode decomposition:a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), doi: 10.1142/S1793536909000047
    Zhang Xiangdong, He Juanxiong, Zhang Jing, et al. 2013. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3(1):47-51
  • 加载中
计量
  • 文章访问数:  1146
  • HTML全文浏览量:  54
  • PDF下载量:  978
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-06

目录

    /

    返回文章
    返回