The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea

GUAN Yao SUN Xiaoming JIANG Xiaodong SA Rina ZHOU Li HUANG Yi LIU Yating LI Xiaojie LU Rongfei WANG Chi

关瑶, 孙晓明, 蒋晓东, 萨日娜, 周莉, 黄毅, 刘亚婷, 李晓洁, 路镕菲, 王驰. 南海多金属结壳(核)铁锰矿物/海水界面效应与成矿元素的富集[J]. 海洋学报英文版, 2017, 36(6): 34-46. doi: 10.1007/s13131-017-1004-4
引用本文: 关瑶, 孙晓明, 蒋晓东, 萨日娜, 周莉, 黄毅, 刘亚婷, 李晓洁, 路镕菲, 王驰. 南海多金属结壳(核)铁锰矿物/海水界面效应与成矿元素的富集[J]. 海洋学报英文版, 2017, 36(6): 34-46. doi: 10.1007/s13131-017-1004-4
GUAN Yao, SUN Xiaoming, JIANG Xiaodong, SA Rina, ZHOU Li, HUANG Yi, LIU Yating, LI Xiaojie, LU Rongfei, WANG Chi. The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(6): 34-46. doi: 10.1007/s13131-017-1004-4
Citation: GUAN Yao, SUN Xiaoming, JIANG Xiaodong, SA Rina, ZHOU Li, HUANG Yi, LIU Yating, LI Xiaojie, LU Rongfei, WANG Chi. The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(6): 34-46. doi: 10.1007/s13131-017-1004-4

南海多金属结壳(核)铁锰矿物/海水界面效应与成矿元素的富集

doi: 10.1007/s13131-017-1004-4
基金项目: The National Natural Science Foundation of China under contract Nos 40473024 and 40343019; the research fund from State Key Laboratory for Mineral Deposits Research in Nanjing University under contract No. 20-15-07; the Investigation and Development of Marine Resources during the 12th Five Year Plan Project under contract No. DY125-13-R-05; the Doctoral Program of Higher Education Research Fund under contract Nos 20040558049 and 20120171130005; the Project of High Level Talents in Colleges of Guangdong Province (2011) and the Fundamental Research Funds for Central Universities under contract Nos 16lgjc11, 12lgjc05 and 09lgpy09.

The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea

  • 摘要: 海底铁锰结壳和结核是重要的海底矿产资源,蕴含着丰富的金属元素并且具有巨大的经济价值。本文主要以南海多金属结壳(核)为研究对象,采用X射线粉晶衍射(XRD)、激光拉曼光谱、红外光谱分析(FTIR)以及X射线光电子能谱对铁锰矿物的矿物学和谱学特征进行了系统的分析和研究。粉晶衍射和拉曼光谱分析结果表明,南海多金属结壳的矿物组成为水羟锰矿、石英和长石,结核的矿物组成为钡镁锰矿、水羟锰矿、石英和长石,铁相矿物均为无定形铁氧化物/氢氧化物,并且锰相矿物和铁相矿物的结晶程度均较差。红外光谱分析结果显示多金属结核和结壳中的铁锰矿物具有大量表面羟基,这些含质子表面羟基官能团,可为海水中各成矿元素的络合提供丰富的活性位点。XPS分析表明多金属结核和结壳中铁锰矿物表面以Fe、Mn和O元素为主,其中Fe呈正三价态,Mn以正四、正三价为主,可能还含有少部分正二价态。对比南海多金属结壳(核)与太平海山结壳,南海多金属结壳(核)具有更为显著的表面羟基氧(-OH)含量,而太平洋海山结壳则以晶格氧(O2-)为主,表明太平洋海山结壳铁锰矿物结晶程度较南海多金属结壳(核)高。综合研究表明,在海底铁锰结壳和结核中(氢)氧化锰/铁矿物与海水之间界面效应对金属离子的富集机理主要有:(1)金属离子与矿物表面羟基进行络合反应,形成以配位键相连的羟基络合物,或与表面的质子交换生成稳定的内层络合物;(2)矿物的带电表面与金属离子通过静电作用形成双电层,生成外层络合物;(3)金属离子与矿物结构中的Mn、Fe离子同晶置换而成为结构阳离子。
  • Bau M, Koschinsky A, Dulski P, et al. 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta, 60(10):1709-1725
    Bidoglio G, Gibson P N, O'Gorman M, et al. 1993. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochimica et Cosmochimica Acta, 57(10):2389-2394
    Burns R G. 1976. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica et Cosmochimica Acta, 40(1):95-102
    Cao Lixin, Wan Haibao, Wang Shubin, et al. 1999. The effect of surface structure on the photoluminescence of SnO2 nanoparticles in hydrosols and organosols. Spectroscopy and Spectral Analysis (in Chinese), 19(5):651-654
    Chukhrov F V, Gorshkov A I, Sivtsov A V, et al. 1979. New data on natural todorokites. Nature, 278(5705):631-632
    Davis J A, Kent D B. 1990. Surface complexation modeling in aqueous geochemistry. In:Hochella Jr M F, White A F, eds. Mineral-water Interface Geochemistry:Reviews in Mineralogy, Volume 23. Washington D C:Mineralogical Society of America, 177-260
    Drits V A, Silvester E, Gorshkov A I, et al. 1997. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite:I. results from X-ray diffraction and selected-area electron diffraction. American Mineralogist, 82(9-10):946-961
    Dzombak D A, Morel F M M. 1990. Surface Complexation Modeling:Hydrous Ferric Oxide. New York:Wiley, 81-95
    Farley K J, Dzombak D A, Morel F M M. 1985. A surface precipitation model for the sorption of cations on metal oxides. Journal of Colloid and Interface Science, 106(1):226-242
    Feng Qi, Kanoh H, Miyai Y, et al. 1995. Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chemistry of Materials, 7(1):148-153
    Feng Qi, Kanoh H, Ooi K. 1999. Manganese oxide porous crystals. Journal of Materials Chemistry, 9(2):319-333
    Feng Xionghan. 2004. Syntheses, transformations and surface chemistry characteristics of the common manganese oxide minerals in soils (in Chinese)[dissertation]. Wuhan:Huazhong Agricultural University
    Friedrich G, Schmitz-Wiechowski A. 1980. Mineralogy and chemistry of a ferromanganese crust from a deep-sea hill, central Pacific, “Valdivia” cruise VA 132. Marine Geology, 37(1-2):71-90
    Garvie L A J, Craven A J. 1994. High-resolution parallel electron energy-loss spectroscopy of Mn L2, 3-edges in inorganic manganese compounds. Physics and Chemistry of Minerals, 21(4):191-206
    Golden D C, Chen C C, Dixon J B. 1987. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays and Clay Minerals, 35(4):271-280
    Guan Yao, Sun Xiaoming, Shi Guiyong, et al. 2017. Rare earth elements (REE) composition and constraints on the genesis of the polymetallic crusts and nodules in the South China Sea. Acta Geologica Sinica (English Edition) (in press)
    Halbach P, Kriete C, Prause B, et al. 1989. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts. Chemical Geology, 76(1-2):95-106
    He Gaowen, Ma Weilin, Song Chengbing, et al. 2011a. Distribution characteristics of seamount cobalt-rich ferromanganese crusts and the determination of the size of areas for exploration and exploitation. Acta Oceanologica Sinica, 30(3):63-75
    He Gaowen, Sun Xiaoming, Xue Ting. 2011b. A Comparative Study of the Geology, Geochemistry and Metallogenetic Mechanism of Polymetallic Nodules and Cobalt-rich Crusts from the Pacific Ocean (in Chinese). Beijing:Geological Publishing House
    Hein J R, Koschinsky A. 2014. Deep-ocean ferromanganese crusts and nodules. In:Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam:Elsevier, 273-291
    Hein J R, Koschinsky A, Bau M, et al. 2000. Cobalt-rich ferromanganese crusts in the Pacific. In:Cronan D S, ed. Handbook of Marine Mineral Deposits. Boca Raton:CRC Press, 239-279
    Hein J R, Koschinsky A, Halliday A N. 2003. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium. Geochimica et Cosmochimica Acta, 67(6):1117-1127
    Hein J R, Spinardi F, Okamoto N, et al. 2015. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geology Reviews, 68:97-116
    Hiemstra T, De Wit J C M, Van Riemsdijk W H. 1989a. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides:a new approach, 2. Application to various important (hydr)oxides. Journal of Colloid and Interface Science, 133(1):105-117
    Hiemstra T, Van Riemsdijk W H, Bolt G H. 1989b. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides:a new approach:I. Model description and evaluation of intrinsic reaction constants. Journal of Colloid and Interface Science, 133(1):91-104
    Hochella Jr M F. 1990. Atomic structure, microtopography, composition, and reactivity of mineral surfaces. In:Hochella Jr M F, White A F, eds. Mineral-water Interface Geochemistry:Reviews in Mineralogy, v 23. Washington D C:Mineralogical Society of America, 87-132
    Jiang Xuejun, Lin Xuehui, Yao De, et al. 2011. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts. Science China:Earth Sciences, 54(2):197-203
    Kashiwabara T, Takahashi Y, Marcus M A, et al. 2013. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean. Geochimica et Cosmochimica Acta, 106:364-378
    Kashiwabara T, Takahashi Y, Tanimizu M. 2009. A XAFS study on the mechanism of isotopic fractionation of molybdenum during its adsorption on ferromanganese oxides. Geochemical Journal, 43(6):e31–e36
    Kashiwabara T, Takahashi Y, Tanimizu M, et al. 2011. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica et Cosmochimica Acta, 75(19):5762-5784
    Kloprogge J T, Duong L V, Wood B J, et al. 2006. XPS study of the major minerals in bauxite:gibbsite, bayerite and (pseudo-) boehmite. Journal of Colloid and Interface Science, 296(2):572-576
    Knipe S W, Mycroft J R, Pratt A R, et al. 1995. X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochimica et Cosmochimica Acta, 59(6):1079-1090
    Koschinsky A, Halbach P. 1995. Sequential leaching of marine ferromanganese precipitates:genetic implications. Geochimica et Cosmochimica Acta, 59(24):5113-5132
    Koschinsky A, Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts:solid-phase associations and seawater speciation. Marine Geology, 198(3-4):331-351
    Koschinsky A, Winkler A, Fritsche U. 2003. Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water. Applied Geochemistry, 18(5):693-710
    Kuhn T, Bau M, Blum N, et al. 1998. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge. Earth and Planetary Science Letters, 163(1-4):207-220
    Liao Shuijiao, Wang Juan, Zhu Duanwei, et al. 2006. Structural characteristics of goethite and its B-loaded oxides. Acta Pedologica Sinica (in Chinese), 43(5):742-748
    Little S H, Sherman D M, Vance D, et al. 2014. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth and Planetary Science Letters, 396:213-222
    Liu Chongxuan, Kota S, Zachara J M, et al. 2001. Kinetic analysis of the bacterial reduction of goethite. Environmental Science & Technology, 35(12):2482-2490
    Liu Ruiping, Liu Huijuan, Qiang Zhimin, et al. 2009. Effects of calcium ions on surface characteristics and adsorptive properties of hydrous manganese dioxide. Journal of Colloid and Interface Science, 331(2):275-280
    Manceau A, Charlet L. 1992. X-ray absorption spectroscopic study of the sorption of Cr(Ⅲ) at the oxide-water interface:I. Molecular mechanism of Cr(Ⅲ) oxidation on Mn oxides. Journal of Colloid and Interface Science, 148(2):425-442
    Manceau A, Gorshkov A I, Drits V A. 1992. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides:Part Ⅱ. Information from EXAFS spectroscopy and electron and X-ray diffraction. American Mineralogist, 77:1144-1157
    Mathieu H J, Landolt D. 1986. An investigation of thin oxide films thermally grown in situ on Fe-24Cr and Fe-24Cr-11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corrosion Science, 26(7):547-559
    Mellin T A, Lei Guobin. 1993. Stabilization of 10Å-manganates by interlayer cations and hydrothermal treatment:implications for the mineralogy of marine manganese concretions. Marine Geology, 115(1-2):67-83
    Mitsunobu S, Harada T, Takahashi Y. 2006. Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environmental Science & Technology, 40(23):7270-7276
    Moffett J W, Ho J. 1996. Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochimica et Cosmochimica Acta, 60(18):3415-3424
    Motschi H. 1987. Aspects of the molecular structure in surface complexes:spectroscopic investigations. In:Stumm W, ed. Aquatic Surface Chemistry. New York:John Wiley and Sons, 111-126
    Murray J W, Dillard J G. 1979. The oxidation of cobalt(Ⅱ) adsorbed on manganese dioxide. Geochimica et Cosmochimica Acta, 43(5):781-788
    Naidja A, Liu C, Huang P M. 2002. Formation of protein-birnessite complex:XRD, FTIR, and AFM analysis. Journal of Colloid and Interface Science, 251(1):46-56
    Nakamoto K. 1978. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 3rd ed. New York:John Wiley, 324-330
    Parida K M, Mohanty S. 1998. Studies on Indian Ocean manganese nodules:VⅢ. Adsorption of aqueous phosphate on ferromanganese nodules. Journal of Colloid and Interface Science, 199(1):22-27
    Potter R M, Rossman G R. 1979. The tetravalent manganese oxides:identification, hydration, and structural relationships by infrared spectroscopy. American Mineralogist, 64:1199-1218
    Pratt A R, Muir I J, Nesbitt H W. 1994. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochimica et Cosmochimica Acta, 58(2):827-841
    Russell J D. 1979. Infrared spectroscopy of ferrihydrite:evidence for the presence of structural hydroxyl groups. Clay Minerals, 14(2):109-114
    Shi Nicheng, Ma Zhesheng, He Wanzhong, et al. 1995. Nano-solids in manganese nodules from northern part of Pacific Ocean floor-Nano-solids in minerals and prospects of its uses in industry. Science in China Series B:Chemistry, 38(12):1493-1500
    Singh B, Sherman D M, Gilkes R J, et al. 2000. Structural chemistry of Fe, Mn, and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy. Clays and Clay Minerals, 48(5):521-527
    Sposito G. 1984. The Surface Chemistry of Soils. New York:Oxford University Press
    Stumm W. 1992. Chemistry of the Solid-water Interface:Processes at the Mineral-water and Particle-water Interface in Natural Systems. New York:John Wiley and Sons
    Stumm W, Morgan J J. 1996. Aquatic Chemistry. New York:John Wiley and Sons
    Tamura H, Mita K, Tanaka A, et al. 2001. Mechanism of hydroxylation of metal oxide surfaces. Journal of Colloid and Interface Science, 243(1):202-207
    Tan B J, Klabunde K J, Sherwood P M A. 1991. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. Journal of the American Chemical Society, 113(3):855-861
    Tonkin J W, Balistrieri L S, Murray J W. 2004. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Applied Geochemistry, 19(1):29-53
    Wang Yifeng, Bryan C, Xu Huifang, et al. 2003. Nanogeochemistry:geochemical reactions and mass transfers in nanopores. Geology, 31(5):387-390
    Wei Junfeng, Wu Daqing. 2000. Surface ionization and surface complexation models at mineral/water interface. Advance in Earth Sciences (in Chinese), 15(1):90-96
    Xiong Yi, Chen Jiafang. 1990. Soil Colloid (Part Ⅲ):Properties of Soil Colloid (in Chinese). Beijing:Science Press
    Xue Ting. 2007. Geochemical characters and ore-forming elements enrichment mechanism of ferromanganese crusts from Pacific Ocean (in Chinese)[dissertation]. Guangzhou:Sun Yat-sen University
    Yao Wensheng, Millero F J. 1996. Adsorption of phosphate on manganese dioxide in seawater. Environmental Science & Technology, 30(2):536-541.
  • 加载中
计量
  • 文章访问数:  661
  • HTML全文浏览量:  47
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-16
  • 修回日期:  2016-04-18

目录

    /

    返回文章
    返回