The complete genome of hydrocarbon-degrading Pseudoal-teromonas sp. NJ289 and its phylogenetic relationship

LIU Fangming WANG Yibin QU Changfeng ZHENG Zhou MIAO Jinlai XU Hua XIAO Tian

刘芳明, 王以斌, 曲长风, 郑洲, 缪锦来, 许华, 肖天. 烃降解菌假交替单胞菌N289的全基因组序列及其进化关系[J]. 海洋学报英文版, 2017, 36(2): 88-93. doi: 10.1007/s13131-017-0979-1
引用本文: 刘芳明, 王以斌, 曲长风, 郑洲, 缪锦来, 许华, 肖天. 烃降解菌假交替单胞菌N289的全基因组序列及其进化关系[J]. 海洋学报英文版, 2017, 36(2): 88-93. doi: 10.1007/s13131-017-0979-1
LIU Fangming, WANG Yibin, QU Changfeng, ZHENG Zhou, MIAO Jinlai, XU Hua, XIAO Tian. The complete genome of hydrocarbon-degrading Pseudoal-teromonas sp. NJ289 and its phylogenetic relationship[J]. Acta Oceanologica Sinica, 2017, 36(2): 88-93. doi: 10.1007/s13131-017-0979-1
Citation: LIU Fangming, WANG Yibin, QU Changfeng, ZHENG Zhou, MIAO Jinlai, XU Hua, XIAO Tian. The complete genome of hydrocarbon-degrading Pseudoal-teromonas sp. NJ289 and its phylogenetic relationship[J]. Acta Oceanologica Sinica, 2017, 36(2): 88-93. doi: 10.1007/s13131-017-0979-1

烃降解菌假交替单胞菌N289的全基因组序列及其进化关系

doi: 10.1007/s13131-017-0979-1
基金项目: The National Natural Science Foundation of China under contract Nos 31200097, 41576187, U1406402-5 and 31202024; the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2013G33 and 2015G10.

The complete genome of hydrocarbon-degrading Pseudoal-teromonas sp. NJ289 and its phylogenetic relationship

  • 摘要: 假交替单胞菌属归属于交替假单胞菌科。交替假单胞菌N289菌株分离自南极海冰,我们通过二代测序技术获得了其全基因组序列,组装后获得2条染色体和1条质粒,大小分别是3.2M、636kb和1.8kb。全基因组共包含3,589个ORF,GC含量为40.83%。基因功能分析表明,该菌酶活性高,具有很强的环境适应性。这项研究有助于了解生物多样性、该菌株的进化地位和微生物相互作用关系。
  • Altschul S F, Gish W, Miller W, et al. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403-410
    Bankevich A, Nurk S, Antipov D, et al. 2012. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5):455-477
    Bland C, Ramsey T L, Sabree F, et al. 2007. CRISPR Recognition Tool (CRT):a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 8(1):209
    Chen X L, Xie B B, Lu J T, et al. 2007. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913:catalytic and structural properties of deseasin MCP-01. Microbiology, 153:2116-2125
    Delcher A L, Harmon D, Kasif S, et al. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Research, 27(23):4636-4641
    Huston A L, Methe B, Deming J W. 2004. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine Psychrophile Colwellia psychrerythraea Strain 34H. Applied and Environmental Microbiology, 70(6):3321-3328
    Ivanova E P, Gorshkova N M, Zhukova N V, et al. 2004. Characterization of Pseudoalteromonas distincta-like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int J Syst Evol Microbiol, 54:1431-1437
    Kallmeyer J, Pockalny R, Adhikari R R, et al. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 109(40):16213-16216
    Keane T M, Creevey C J, Pentony M M, et al. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol, 6:29
    Lagesen K, Hallin P, Rødland E A, et al. 2007. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9):3100-3108
    Li Chunyang, Chen Xiulan, Qin Qilong, et al. 2015. Structural insights into the multispecific recognition of dipeptides of deep-sea gram-negative bacterium Pseudoalteromonas sp. strain SM9913. Journal of Bacteriology, 197(6):1125-1134
    Liu Shengbo, Chen Xiulan, He Hailun, et al. 2013. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Applied and Environmental Microbiology, 79(1):224-230
    Lloyd K G, Schreiber L, Petersen D G, et al. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496(7444):215-218
    Lobry J R, Louarn J M. 2003. Polarisation of prokaryotic chromosomes. Current Opinion in Microbiology, 6(2):101-108
    Lowe T M, Eddy S R. 1997. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5):955-964
    Marraffini L A. 2015. CRISPR-Cas immunity in prokaryotes. Nature, 526(7571):55-61
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. European Molecular Biology Network Journal, 17(1):10-12
    Médigue C, Krin E, Pascal G, et al. 2005. Coping with cold:the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 15(10):1325-1335
    Petersen T N, Brunak S, von Heijne G, et al. 2011. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nature Methods, 8(10):785-786
    Ribeiro F J, Przybylski D, Yin Shuangye, et al. 2012. Finished bacterial genomes from shotgun sequence data. Genome Research, 22(11):2270-2277
    Stothard P, Wishart D S. 2005. Circular genome visualization and exploration using CGView. Bioinformatics, 21(4):537-539
    Zhao Huilin, Chen Xiulan, Xie Binbin, et al. 2012. Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6-2:cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. Journal of Biological Chemistry, 287(47):39710-39720
  • 加载中
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  49
  • PDF下载量:  1390
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-01
  • 修回日期:  2016-02-18

目录

    /

    返回文章
    返回