The performance of a z-level ocean model in modeling the global tide

XIAO Bin QIAO Fangli SHU Qi

肖斌, 乔方利, 舒启. 基于z坐标海洋模式的全球正压潮波数值模拟研究[J]. 海洋学报英文版, 2016, 35(11): 35-43. doi: 10.1007/s13131-016-0884-z
引用本文: 肖斌, 乔方利, 舒启. 基于z坐标海洋模式的全球正压潮波数值模拟研究[J]. 海洋学报英文版, 2016, 35(11): 35-43. doi: 10.1007/s13131-016-0884-z
XIAO Bin, QIAO Fangli, SHU Qi. The performance of a z-level ocean model in modeling the global tide[J]. Acta Oceanologica Sinica, 2016, 35(11): 35-43. doi: 10.1007/s13131-016-0884-z
Citation: XIAO Bin, QIAO Fangli, SHU Qi. The performance of a z-level ocean model in modeling the global tide[J]. Acta Oceanologica Sinica, 2016, 35(11): 35-43. doi: 10.1007/s13131-016-0884-z

基于z坐标海洋模式的全球正压潮波数值模拟研究

doi: 10.1007/s13131-016-0884-z

The performance of a z-level ocean model in modeling the global tide

  • 摘要: 本文基于z坐标海洋模式MOM4建立了全球正压潮波数值模式,研究了不同空间分辨率、地形数据及平滑方法对模拟结果的影响。结果表明,合适的滤波半径可以改善所模拟的全球潮波结构,更高质量的地形数据可以显著降低全球潮波数值模式的潮位均方根误差。敏感实验结果表明,数值模式对水平分辨率较为敏感,其中水平分辨率为0.5°和0.25°的数值模式对M2分潮迟角的模拟能力相比1°水平分辨的模式提高了35.5%。为了解决全球正压潮波数值模式中动能偏大的问题,引入了地形拖曳参数化方案,对正压潮波数值模式中所不能解析的内波的生成和破碎所导致的潮能耗散进行了合理地参数化。所建立的最终版本的全球正压潮波数值模式相比TPXO7.2的M2分潮潮位均方根误差为8.5cm。其所模拟的全球M2和K1分潮的潮能通量与TPXO7.2吻合的较好,潮能通量的相关系数可以作为衡量数值模式模拟能力的一个重要指标。
  • Accad Y, Pekeris C L. 1978. Solution of the Tidal Equations for the M2 and S2 Tides in the World Oceans from a Knowledge of the Tidal Potential Alone. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 290(1368):235-266
    Adcroft A, Hill C, Marshall J. 1997. Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev, 125(9):2293-2315
    Antonov J, Seidov D, Boyer T, et al. 2010. World Ocean Atlas 2009, Volume 2:Salinity. S. Levitus, Ed. NOAA Atlas NESDIS, 69
    Arbic B K, Garner S T, Hallberg R W, et al. 2004. The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep Sea Res Pt Ⅱ, 51(25):3069-3101
    Arbic B K, Wallcraft A J, Metzger E J. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(3):175-187
    Bell T. 1975. Topographically generated internal waves in the open ocean. J Geophys Res, 80(3):320-327
    Eanes R, Bettadpur S. 1995. The CSR 3.0 global ocean tide model. Center for Space Research, Technical Memorandum, CSR-TM-95-06
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech, 19(2):183-204
    Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788):775-778
    Egbert G D, Ray R D, Bills B G. 2004. Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J Geophys Res, 109(C3):C03003
    Fretwell P, Pritchard H D, Vaughan D G, et al. 2013. Bedmap2:improved ice bed, surface and thickness data sets for Antarctica. Cryosphere, 7(1):375-393
    Griffies S M, Harrison M J, Pacanowski R C, et al. 2004. A technical guide to MOM4. GFDL Ocean Group Tech Rep, 5:371
    IOC, IHO, BODC. 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, Liverpool, UK:British Oceanographic Data Centre
    Jayne S R, St Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophys Res Lett, 28(5):811-814
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing:A review and a model with a nonlocal boundary layer parameterization. Rev Geophys, 32(4):363-403
    Le Provost C. 2001. Ocean tides. International Geophysics, 69:267-303
    Locarnini R, Mishonov A, Antonov J, et al. 2010. World Ocean Atlas 2009, vol. 1, Temperature, edited by S. Levitus. Washington, DC:US Gov Print Off, 184
    Müller M, Haak H, Jungclaus J, et al. 2010. The effect of ocean tides on a climate model simulation. Ocean Modelling, 35(4):304-313
    Munk W, Wunsch C. 1998. Abyssal recipes:energetics of tidal and wind mixing. Deep-Sea Research Part Ⅰ, 45(12):1977-2010
    Murray R J. 1996. Explicit generation of orthogonal grids for ocean models. J Comput Phys, 126(2):251-273
    NGDC. 1988. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth.. edited. Boulder, Colorado:NOAA, National Geophysical Data Center
    NGDC. 2006. 2-minute Gridded Global Relief Data (ETOPO2v2), edited by U.S. Department of Commerce N. O. a. A. A.. Boulder, Colorado:National Geophysical Data Center
    Pacanowski R C, Gnanadesikan A. 1998. Transient response in a zlevel ocean model that resolves topography with partial cells. Mon Weather Rev, 126(12):3248-3270
    Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci-UK, 28(8):929-937
    Pekeris C L, Accad Y. 1969. Solution of Laplace's Equations for the M2 Tide in the World Oceans. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 265(1165):413-436
    Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophys Res Lett, 34(3):L03611
    Schwiderski E W. 1980. On charting global ocean tides. Rev Geophys, 18(1):243-268
    Shriver J, Arbic B K, Richman J, et al. 2012. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J Geophys Res, 117(C10):C10024
    Shum C, Woodworth P, Andersen O, et al. 1997. Accuracy assessment of recent ocean tide models. J Geophys Res, 102(C11):25173-25194
    Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Res Pt Ⅱ, 51(25):3043-3068
    Smith W H, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956-1962
    Yu H, Wang Z, Kuang L, et al. 2015. A numerical study on the circulation and tide in a zigzag bay. Acta Oceanologica Sinica, 34(1):119-128
    Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13(1):167-182
    Wang Yihang, Fang Guohong, Wei Zexun, et al. 2010. Accuracy assessment of global ocean tide models base on satellite altimetry(in Chinese). Adv Earth Sci, 25(4):353-359
  • 加载中
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  36
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-07
  • 修回日期:  2015-12-08

目录

    /

    返回文章
    返回