The study of the adductor muscle-shell interface structure in three Mollusc species

ZHU Yaoyao SUN Chengjun SONG Yingfei JIANG Fenghua YIN Xiaofei TANG Min DING Haibing

朱曜曜, 孙承君, 宋影飞, 蒋凤华, 尹晓斐, 唐敏, 丁海兵. 三种软体动物闭壳肌-壳界面结构研究[J]. 海洋学报英文版, 2016, 35(8): 57-64. doi: 10.1007/s13131-016-0878-x
引用本文: 朱曜曜, 孙承君, 宋影飞, 蒋凤华, 尹晓斐, 唐敏, 丁海兵. 三种软体动物闭壳肌-壳界面结构研究[J]. 海洋学报英文版, 2016, 35(8): 57-64. doi: 10.1007/s13131-016-0878-x
ZHU Yaoyao, SUN Chengjun, SONG Yingfei, JIANG Fenghua, YIN Xiaofei, TANG Min, DING Haibing. The study of the adductor muscle-shell interface structure in three Mollusc species[J]. Acta Oceanologica Sinica, 2016, 35(8): 57-64. doi: 10.1007/s13131-016-0878-x
Citation: ZHU Yaoyao, SUN Chengjun, SONG Yingfei, JIANG Fenghua, YIN Xiaofei, TANG Min, DING Haibing. The study of the adductor muscle-shell interface structure in three Mollusc species[J]. Acta Oceanologica Sinica, 2016, 35(8): 57-64. doi: 10.1007/s13131-016-0878-x

三种软体动物闭壳肌-壳界面结构研究

doi: 10.1007/s13131-016-0878-x
基金项目: The Basic Scientific Fund for National Public Research Institutes of China under contract No. 2011T10; the National Natural Science Foundation of China-Shandong Joint Grant U1406402-5; Qingdao Talents Program under contract No. 13-CX-20; the National Natural Science Foundation of China under contract Nos 31100567, 41176061, 41521064, 41306074 and 31160098; the Taishan Scholar Program.

The study of the adductor muscle-shell interface structure in three Mollusc species

  • 摘要: 闭壳肌的疤痕部位(AMS)是闭壳肌和壳的固定点。它是一个重要的有机-无机界面和应力分布面。尽管有一些近期的研究进展,我们对AMS组成和结构的了解仍然是有限的。这里,我们研究比较了三种双壳类动物:厚壳贻贝、栉孔扇贝、菲律宾蛤仔的AMS。结果表明这三种动物的AMS明显不同。厚壳贻贝和栉孔扇贝在AMS的壳结构珍珠片层上部有一柱状层,该层在厚壳贻贝中的结构更有规律。菲律宾蛤仔缺乏此柱状层。原子力显微镜结果显示在三种软体动物中AMS的结构比珍珠层结构更光滑。傅立叶变换红外分析结果显示珍珠层和AMS层组成成分略有不同。聚丙烯酰胺凝胶电泳蛋白分离结果显示在厚壳贻贝界面柱状层存在一种约70 kDa的蛋白。对这种蛋白的进一步分析显示其还有较高摩尔比的Asx(Asp+Asn),Glx(Glu+Gln)和Gly。AMS的特殊结构和组成对其稳定性、粘性以及在该应力分散部位的功能有重要作用。
  • Addadi L, Joester D, Nudelman F, et al. 2006. Mollusk shell formation:a source of new concepts for understanding biomineralization processes. Chemistry-A European Journal, 12(4):980-987
    Andersen F A, Brečević L. 1991. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chemica Scandinavica, 45:1018-1024
    Balmain J, Hannoyer B, Lopez E. 1999. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. Journal of Bio-medical Materials Research, 48(5):749-754
    Belcher A M, Wu X H, Christensen R J, et al. 1996. Control of crystal phase switching and orientation by soluble mollusc-shell pro-teins. Nature, 381(6577):56-58
    Checa A. 2000. A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue and Cell, 32(5):405-416
    C.lfen H. 2010. Biomineralization:a crystal-clear view. Nature Ma-terials, 9(12):960-961
    Currey J D. 1977. Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society B:Biological Sciences, 196(1125):443-463
    Currey J D. 1999. The design of mineralised hard tissues for their mechanical functions. Journal of Experimental Biology, 202(23):3285-3294
    Feng Q, Li H B, Pu G, et al. 2000. Crystallographic alignment of cal-cite prisms in the oblique prismatic layer of Mytilus edulis shell. Journal of Materials Science, 35(13):3337-3340
    Furuhashi T, Schwarzinger C, Miksik I, et al. 2009. Molluscan shell evolution with review of shell calcification hypothesis. Compar-ative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 154(3):351-371
    Kennedy V S, Newell R I, Eble A F. 1996. The Eastern Oyster:Crassostrea Virginica. Maryland:University of Maryland Sea Grant College
    Kong Y, Jing G, Yan Z, et al. 2009. Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. Journal of Biological Chemistry, 284(16):10841-10854
    Lee S W, Jang Y N, Kim J C. 2011. Characteristics of the Aragonitic lay-er in adult oyster shells, Crassostrea gigas:structural study of myostracum including the adductor muscle scar. Evidence-Based Complementary and Alternative Medicine, 2011:742963
    Lin A, Meyers M A. 2005. Growth and structure in abalone shell. Ma-terials Science and Engineering:A, 390(1-2):27-41
    Lippmann F. 1973. Sedimentary Carbonate Minerals. Berlin Heidel-berg:Springer
    Lowenstam H A, Weiner S. 1989. On Biomineralization. Oxford:Ox-ford University Press
    Marie B, Le Roy N, Zanella-Cléon I, et al. 2011. Molecular evolution of mollusc shell proteins:insights from proteomic analysis of the edible mussel Mytilus. Journal of Molecular Evolution, 72(5-6):531-546
    Mount A S, Wheeler A, Paradkar R P, et al. 2004. Hemocyte-mediated shell mineralization in the eastern oyster. Science, 304(5668):297-300
    Song Y, Lu Y, Ding H, et al. 2013. Structural characteristics at the ad-ductor muscle and shell interface in Mussel. Applied Biochem-istry and Biotechnology, 171(5):1203-1211
    Spann N, Harper E M, Aldridge D C. 2010. The unusual mineral vater-ite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften, 97(8):743-751
    Suzuki M, Iwashima A, Tsutsui N, et al. 2011. Identification and char-acterisation of a calcium carbonate-binding protein, blue mus-sel shell protein (BMSP), from the nacreous layer. ChemBio-Chem, 12(16):2478-2487
    Suzuki M, Saruwatari K, Kogure T, et al. 2009. An acidic matrix pro-tein, Pif, is a key macromolecule for nacre formation. Science, 325(5946):1388-1390
    Takeuchi T, Endo K. 2006. Biphasic and dually coordinated expres-sion of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Marine Biotechnology, 8(1):52-61
    Vagenas N V, Gatsouli A, Kontoyannis C G. 2003. Quantitative analys-is of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta, 59(4):831-836
    Wainwright S A. 1969. Stress and design in bivalved mollusc shell. Nature, 224(5221):777-779
    Wheeler A P, Rusenko K W, Swift D M, et al. 1988. Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix. Marine Biology, 98(1):71-80
    Yoon G L, Kim B T, Kim B O, et al. 2003. Chemical-mechanical char-acteristics of crushed oyster-shell. Waste Management, 23(9):825-834
  • 加载中
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  40
  • PDF下载量:  901
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-09-14

目录

    /

    返回文章
    返回