Compositional and temperature variations of the Pacific upper mantle since the Cretaceous

ZHANG Guoliang

张国良. 白垩纪以来太平洋上地幔组成和温度变化[J]. 海洋学报英文版, 2016, 35(4): 19-25. doi: 10.1007/s13131-016-0839-4
引用本文: 张国良. 白垩纪以来太平洋上地幔组成和温度变化[J]. 海洋学报英文版, 2016, 35(4): 19-25. doi: 10.1007/s13131-016-0839-4
ZHANG Guoliang. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous[J]. Acta Oceanologica Sinica, 2016, 35(4): 19-25. doi: 10.1007/s13131-016-0839-4
Citation: ZHANG Guoliang. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous[J]. Acta Oceanologica Sinica, 2016, 35(4): 19-25. doi: 10.1007/s13131-016-0839-4

白垩纪以来太平洋上地幔组成和温度变化

doi: 10.1007/s13131-016-0839-4
基金项目: The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11030103; the National Natural Science Foundation of China under contract Nos 41376065, 41176043 and 41522602; the project of "AoShan" excellent scholar for Qingdao National Laboratory for Marine Science and Technology.

Compositional and temperature variations of the Pacific upper mantle since the Cretaceous

  • 摘要: 白垩纪中期地球地质过程表现出的一系列异常,如:地磁长期停滞倒转、海平面升高、大量火山活动等,可能与白垩纪大火成岩省的形成和地幔组成及温度演化等深部作用有关。由于白垩纪中期的火山活动异常主要发生在太平洋,本研究通过大洋钻探(DSDP/ODP/IODP)在太平洋获得的玄武岩化学组成研究地幔组成和温度变化。根据距离太平洋Ontong Java洋底高原的距离远近,将这些站位分为洋底高原玄武岩、近洋底高原洋壳玄武岩和正常洋中脊玄武岩。本研究指出:白垩纪时期形成的正常洋中脊玄武岩在平均Na8、La/Sm和Sm/Yb,以及Sr-Nd同位素组成上与现代太平洋扩张中心相近。Ontong Java洋底高原(形成于125-90 Ma)相对洋中脊玄武岩具有明显低的Na8、和143Nd/144Nd比值,以及明显高的La/Sm、87Sr/86Sr比值。然而,这些近洋底高原洋壳玄武岩与洋底高原玄武岩接近,表明Ontong Java洋底高原岩浆活动附近的洋中脊玄武岩具有明显的源区混染。可能来自超级地幔柱的Ontong Java在其活动期间对同一活动时期形成的大面积洋中脊玄武岩源区具有明显影响。基于中生代时期正常洋底玄武岩的化学组成,本研究指出白垩纪时期正常洋中脊地幔组成和熔融条件与现代快速扩张洋中脊段相似。中白垩时期洋中脊玄武岩表现出的熔融条件变化不一定反映地幔温度变化,而更可能与地幔源区和扩张速率有关系。
  • Bartolini A, Larson R L. 2001. Pacific microplate and the Pangea su-percontinent in the Early to Middle Jurassic. Geology, 29(8):735-738
    Castillo P R, Lonsdale P F, Moran C L, et al. 2009. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec Trench:Implications for the generation of arc lavas. Lithos, 112(1-2):87-102
    Castillo P R, Pringle M S, Carlson R W. 1994. East Mariana Basin tholeiites:Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?. Earth and Planetary Science Letters, 123(1-3):139-154
    Cogné J P, Humler E. 2004. Temporal variation of oceanic spreading and crustal production rates during the last 180 My. Earth and Planetary Science Letters, 227(3-4):427-439
    Davis E E, Lister C R B. 1974. Fundamentals of ridge crest topography. Earth and Planetary Science Letters, 21(4):405-413
    Downey N J, Stock J M, Clayton R W, et al. 2007. History of the Creta-ceous Osbourn spreading center. Journal of Geophysical Re-search:Solid Earth, 112(B4):doi: 10.1029/2006JB004550
    Fisk M, Kelley K A. 2002. Probing the Pacific's oldest MORB glass:mantle chemistry and melting conditions during the birth of the Pacific plate. Earth and Planetary Science Letters, 202(3-4):741-752
    Hardebeck J, Anderson D L. 1996. Eustasy as a test of a Cretaceous superplume hypothesis. Earth and Planetary Science Letters, 137(1-4):101-108
    Hu Xiumian. 2005. Middle Cretaceous abnormal geological events and global change. Earth Science Frontiers(in Chinese), 12(2):222-230
    Humlera E, Langmuirb C, Dauxc V. 1999. Depth versus age:new per-spectives from the chemical compositions of ancient crust. Earth and Planetary Science Letters, 173(1-2):7-23
    Janney P E, Castillo P R. 1996. Basalts from the Central Pacific Basin:Evidence for the origin of Cretaceous igneous complexes in the Jurassic western Pacific. Journal of Geophysical Research:Solid Earth, 101(B2):2875-2893
    Johnson H P, Carlson R L. 1992. Variation of sea floor depth with age:a test of models based on drilling results. Geophysical Re-search Letters, 19(19):1971-1974
    Kempton P D, Fitton J G, Saunders A D, et al. 2000. The Iceland plume in space and time:a Sr-Nd-Pb-Hf study of the North At-lantic rifted margin. Earth and Planetary Science Letters, 177(3-4):255-271
    Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research:Solid Earth, 92(B8):8089-8115
    Korenaga J. 2005. Why did not the Ontong Java Plateau form subaeri-ally?. Earth and Planetary Science Letters, 234(3-4):385-399
    Larson R L. 1991a. Latest pulse of Earth:Evidence for a mid-Creta-ceous superplume. Geology, 19(6):547-550
    Larson R L. 1991b. Geological consequences of superplumes. Geo-logy, 19(10):963-966
    Larson R L, Olson P. 1991. Mantle plumes control magnetic reversal frequency. Earth and Planetary Science Letters, 107(3-4):437-447
    Larson R L, Pockalny R A, Viso R F, et al. 2002. Mid-Cretaceous tec-tonic evolution of the Tongareva triple junction in the south-western Pacific Basin. Geology, 30(1):67-70
    Loper D E. 1992. On the correlation between mantle plume flux and the frequency of reversals of the geomagnetic field. Geophysic-al Research Letters, 19(1):25-28
    Machetel P, Humler E. 2003. High mantle temperature during Creta-ceous avalanche. Earth and Planetary Science Letters, 208(3-4):125-133
    McKenzie D. 1984. The generation and compaction of partially mol-ten rock. Journal of Petrology, 25(3):713-765
    Nakanishi M, Tamaki K, Kobayashi K. 1992. A new Mesozoic iso-chron chart of the northwestern Pacific Ocean:Paleomagnetic and tectonic implications. Geophysical Research Letter, 19(7):693-696
    Niu Y, Hékinian R. 2004. Ridge suction drives plume-ridge interac-tions. In:Hékinian R, Cheminée J L, Stoffers P, eds. Oceanic Hotspots. Berlin Heidelberg:Springer-Verlag, 285-307
    Ozima M, Saito K, Takigami Y. 1981. 40Ar/39Ar geochronological stud-ies on rocks drilled at Holes 462 and 462A, Deep Sea Drilling Project Leg 61. In:Initial Reports of the Deep Sea Drilling Project. US:US Govt Printing Office, 61:701-703
    Ricciardi K, Abbott D. 1996. Increased mantle convection during the mid-Cretaceous:A comparative study of mantle potential tem-perature. Journal of Geophysical Research:Solid Earth, 101(B4):8673-8684
    Rowley D B. 2002. Rate of plate creation and destruction:180 Ma to present. Geological Society of America Bulletin, 114(8):927-933
    Seton M, Gaina C, Müller R D, et al. 2009. Mid-Cretaceous seafloor spreading pulse:Fact or fiction?. Geology, 37(8):687-690
    Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956-1962
    Sutherland R, Hollis C. 2001. Cretaceous demise of the Moa plate and strike-slip motion at the Gondwana margin. Geology, 29(3):279-282
    Taylor B. 2006. The single largest oceanic plateau:Ontong Java-Mani-hiki-Hikurangi. Earth and Planetary Science Letters, 241(3-4):372-380
    Zhang G L. 2011. Comparative study of magmatism in East Pacific rise versus nearby seamounts:constraints on magma supply and thermal structure beneath mid-ocean ridge. Acta Geolo-gica Sinica(English Edition), 85(6):1286-1298
    Zhang G L, Chen L H, Li S Z. 2013. Mantle Dynamics and Generation of a Geochemical Mantle Boundary along the East Pacific Rise-Pacific/Antarctic ridge. Earth and Planetary Science Letters, 383:153-163
    Zhang G L, Smith-Duque C, Tang Suohan, et al. 2012. Geochemistry of basalts from IODP site U1365:Implications for magmatism and mantle source signatures of the mid-Cretaceous Osbourn Trough. Lithos, 144-145:73-87
  • 加载中
计量
  • 文章访问数:  978
  • HTML全文浏览量:  30
  • PDF下载量:  1034
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-07-02

目录

    /

    返回文章
    返回