Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)

SUN Jia ZUO Juncheng LING Zheng YAN Yunwei

孙佳, 左军成, 凌征, 闫运伟. 海洋上层暖水在热带气旋迅速增强中的作用:基于台风威马逊(1409)的个例研究[J]. 海洋学报英文版, 2016, 35(3): 63-68. doi: 10.1007/s13131-015-0761-1
引用本文: 孙佳, 左军成, 凌征, 闫运伟. 海洋上层暖水在热带气旋迅速增强中的作用:基于台风威马逊(1409)的个例研究[J]. 海洋学报英文版, 2016, 35(3): 63-68. doi: 10.1007/s13131-015-0761-1
SUN Jia, ZUO Juncheng, LING Zheng, YAN Yunwei. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)[J]. Acta Oceanologica Sinica, 2016, 35(3): 63-68. doi: 10.1007/s13131-015-0761-1
Citation: SUN Jia, ZUO Juncheng, LING Zheng, YAN Yunwei. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)[J]. Acta Oceanologica Sinica, 2016, 35(3): 63-68. doi: 10.1007/s13131-015-0761-1

海洋上层暖水在热带气旋迅速增强中的作用:基于台风威马逊(1409)的个例研究

doi: 10.1007/s13131-015-0761-1

Role of ocean upper layer warm water in the rapid intensification of tropical cyclones:A case study of typhoon Rammasun (1409)

  • 摘要: 在登陆海南岛之前,台风威马逊在南海北部从热带风暴级别迅速增强成为超强台风。观测数据的分析结果显示,海洋上层的异常暖水在威马逊的迅速增强过程中扮演了重要的角色。威马逊期间,南海北部的海表面温度相比于气候态海表面温度暖很多。这部分异常暖水为威马逊提供了更多的能量,从而导致了威马逊的迅速增强。数值模拟结果进一步证明,南海北部的暖水在台风威马逊的迅速增强过程中起重要作用。如果没有这团异常暖水的影响,威马逊只增强25 hPa,仅为有暖水影响条件下增强程度的58.1%。
  • Black P G, Holland G J. 1995. The boundary layer of tropical cyclone Kerry (1979). Mon Wea Rev, 123(7):2007-2028
    Cangialosi J P, Franklin J L. 2014. 2013 National Hurricane Center forecast verification report. NOAA/NWS/NCEP/National Hur-ricane Center
    Chan J C L, Duan Yihong, Shay L K. 2001. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J At-mos Sci, 58(2):154-172
    DeMaria M, Pickle J D. 1988. A simplified system of equations for simulation of tropical cyclones. J Atmos Sci, 45(10):1542-1554
    Duan Yihong, Wu Rongsheng, Yu Runling, et al. 2013. Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model. Acta Meteorol Sin, 27(5):658-672
    Elsberry R L, Lambert T D B, Boothe M A. 2007. Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea Forecasting, 22(4):747-762
    Emanuel K A. 1986. An air-sea interaction theory for tropical cyc-lones. Part I:steady-state maintenance. J Atmos Sci, 43(6):585-605
    Evans J L. 1993. Sensitivity of tropical cyclone intensity to sea surface temperature. J Climate, 6(6):1133-1140
    Kaplan J, DeMaria M. 2003. Large-scale characteristics of rapidly in-tensifying tropical cyclones in the North Atlantic basin. Wea Forecasting, 18(6):1093-1108
    Large W G, Pond S. 1982. Sensible and latent heat flux measurements over the ocean. J Phys Oceanogr, 12(5):464-482
    Lin I I, Black P, Price J F, et al. 2013. An Ocean coupling potential in-tensity index for tropical cyclones. Geophys Res Lett, 40(9):1878-1882
    Lin I I, Pun I F, Wu C C. 2009. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II:Depend-ence on translation speed. Mon Wea Rev, 137(11):3744-3757
    Lin I I, Wu C C, Emanuel K A, et al. 2005. The interaction of super-typhoon maemi (2003) with a warm Ocean eddy. Mon Wea Rev, 133(9):2635-2649
    Lin I I, Wu C C, Pun I F, et al. 2008. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I:Ocean features and the category 5 typhoons' intensification. Mon Wea Rev, 136(9):3288-3306
    Malkus J S, Riehl H. 1960. On the dynamics and energy transforma-tions in steady-state hurricanes. Tellus, 12(1):1-20
    Rotunno R, Emanuel K A. 1987. An air-Sea interaction theory for tropical cyclones. Part II:evolutionary study using a nonhydro-static axisymmetric numerical model. J Atmos Sci, 44(3):542-561
    Schade L R, Emanuel K A. 1999. The ocean's effect on the intensity of tropical cyclones:Results from a simple coupled atmosphere-Ocean model. J Atmos Sci, 56(4):642-651
    Sun Yuan, Zhong Zhong, Ha Yao, et al. 2013. The dynamic and ther-modynamic effects of relative and absolute sea surface temper-ature on tropical cyclone intensity. Acta Meteorol Sin, 27(1):40-49
    Wang Y, Wu C C. 2004. Current understanding of tropical cyclone structure and intensity changes-a review. Meteorol Atmos Phys, 87(4):257-278
    Wang Bin, Zhou X. 2008. Climate variation and prediction of rapid in-tensification in tropical cyclones in the western North Pacific. Meteorol Atmos Phys, 99(1-2):1-16
    Willoughby H E. 1995. Mature structure and evolution. In:Elsberry R L, ed. Global Perspectives on Tropical Cyclones. Geneva. Switzerland:World Meteorological Organization Rep, 21-62
    Wu Liguang, Wang Bin, Braun S A. 2005. Impacts of air-Sea interac-tion on tropical cyclone track and intensity. Mon Wea Rev, 133(11):3299-3314
    Xu Jing, Wang Yuqing. 2010. Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J Atmos Sci, 67(6):1831-1852
  • 加载中
计量
  • 文章访问数:  1568
  • HTML全文浏览量:  58
  • PDF下载量:  1100
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-13
  • 修回日期:  2015-09-28

目录

    /

    返回文章
    返回