Temporal variability of vertical heat flux in the Makarov Basin during the ice camp observation in summer 2010

GUO Guijun SHI Jiuxin JIAO Yutian

郭桂军, 史久新, 矫玉田. 2010年马卡罗夫海盆冰站观测期间垂向热通量时间变化研究[J]. 海洋学报英文版, 2015, 34(11): 118-125. doi: 10.1007/s13131-015-0755-z
引用本文: 郭桂军, 史久新, 矫玉田. 2010年马卡罗夫海盆冰站观测期间垂向热通量时间变化研究[J]. 海洋学报英文版, 2015, 34(11): 118-125. doi: 10.1007/s13131-015-0755-z
GUO Guijun, SHI Jiuxin, JIAO Yutian. Temporal variability of vertical heat flux in the Makarov Basin during the ice camp observation in summer 2010[J]. Acta Oceanologica Sinica, 2015, 34(11): 118-125. doi: 10.1007/s13131-015-0755-z
Citation: GUO Guijun, SHI Jiuxin, JIAO Yutian. Temporal variability of vertical heat flux in the Makarov Basin during the ice camp observation in summer 2010[J]. Acta Oceanologica Sinica, 2015, 34(11): 118-125. doi: 10.1007/s13131-015-0755-z

2010年马卡罗夫海盆冰站观测期间垂向热通量时间变化研究

doi: 10.1007/s13131-015-0755-z
基金项目: The Global Change Research Program of China under contract No. 2015CB953902; the National Natural Science Foundation of China under contract Nos 41330960 and 40976111.

Temporal variability of vertical heat flux in the Makarov Basin during the ice camp observation in summer 2010

  • 摘要: 本文利用2010年8月中国第四次北极考察期间在马卡罗夫海盆布设的长期冰站获得的数据,对马卡罗夫海盆冰下上层海洋热通量时间变化规律及其对海冰融化和冬季混合层残留水热含量发展过程的影响进行了研究.在冰站漂流期间,马卡罗夫海盆冰下上层海洋呈现出明显的垂向层化特征.受大气温度变化影响,混合层海水向海冰输送的热通量随时间呈现出了三个不同的发展阶段,在12.4 W·m-2到43.6 W·m-2的范围内波动.混合层向海冰输送的热量平均每天可以融冰(0.7±0.3) cm,海冰融化速度日变化与实测结果相吻合.同时,受夏季融冰的影响,混合层之下的季节性盐跃层层化加强,导致混合层海水穿过混合层底向下的热通量相对较小,只有0.87 W·m-2,说明进入夏季混合层的太阳辐射主要用于融冰,只有一小部分向下输送储存在冬季混合层残留水中.受观测期间大气急剧降温过程的影响,混合层海水穿过混合层底向冬季混合层残留水的热通量分化成了两个不同的发展阶段,相对大气降温存在着一天的滞后.虽然冷盐跃层的存在制约着大西洋水穿过冬季混合层残留水底部向上的热量输送,该界面向上的热通量依然达到了0.18 W·m-2并存储在冬季混合层残留水中.大西洋水向上的热通量一般认为接近于0,在此显著的原因在于冬季混合层残留水的存在增大了上层海水和冷盐跃层之间的温度梯度.冬季混合层残留水作为混合层海水和大西洋水热量输送的蓄热层,其热含量的累积会延迟冬季结冰过程的开始.
  • Aagaard K, Coachman L K, Carmack E. 1981. On the halocline of the Arctic Ocean. Deep-Sea Research Part A: Oceanographic Research Papers, 28(6): 529-545
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
    Dewey R, Muench R, Gunn J. 1999. Mixing and vertical heat flux estimates in the Arctic Eurasian Basin. Journal of Marine Systems, 21(1-4): 199-205
    Fer I. 2009. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmospheric and Oceanic Science Letters, 2(3): 148-152
    Fowler C, Emery W J, Maslanik J. 2004. Satellite-derived evolution of Arctic sea ice age: October 1978 to March 2003. IEEE Geoscience and Remote Sensing Letters, 1(2): 71-74
    Kawaguchi Y, Hutchings J K, Kikuchi T, et al. 2012. Anomalous seaice reduction in the Eurasian Basin of the Arctic Ocean during summer 2010. Polar Science, 6(1): 39-53
    Krishfield R A, Perovich D K. 2005. Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. Journal of Geophysical Research: Oceans (1978-2012), 110: C07021
    Lei R B, Zhang Z H, Matero I, et al. 2012. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Research, 31(1): 17325
    Lindsay R W, Zhang J, Schweiger A, et al. 2009. Arctic sea ice retreat in 2007 follows thinning trend. Journal of Climate, 22(1): 165-176
    Liu Y H, Key J R. 2014. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environmental Research Letters, 9(4): 044002
    Maykut G A, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76(6): 1550-1575
    Maykut G A. 1982. Large-scale heat exchange and ice production in the central Arctic. Journal of Geophysical Research: Oceans (1978-2012), 87(C10): 7971-7984
    Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501
    Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502
    Maykut G A, McPhee M G. 1995. Solar heating of the Arctic mixed layer. Journal of Geophysical Research: Oceans (1978-2012), 100(C12): 24691-24703
    McPhee M G. 1988. Analysis and prediction of short-term ice drift. Journal of Offshore Mechanics and Arctic Engineering, 110(1): 94-100
    McPhee M G. 1992. Turbulent heat flux in the upper ocean under sea ice. Journal of Geophysical Research: Oceans (1978-2012), 97(C4): 5365-5379
    McPhee M G. 2002. Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. Journal of Geophysical Research: Oceans (1978-2012), 107(C10): SHE 11-1-SHE 11-15
    McPhee M G, Kikuchi T, Morison J H, et al. 2003. Ocean-to-ice heat flux at the North Pole environmental observatory. Geophysical Research Letters, 30(24): 2274
    McPhee M G, Kottmeier C, Morison J H. 1999. Ocean heat flux in the central Weddell Sea during winter. Journal of Physical Oceanography, 29(6): 1166-1179
    McPhee M G, Proshutinsky A, Morison J H, et al. 2009. Rapid change in freshwater content of the Arctic Ocean. Geophysical Research Letters, 36(10): L10602
    Pacanowski R C, Philander S G H. 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11(11): 1443-1451
    Rudels B, Anderson L G, Jones E P. 1996. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans (1978-2012), 101(C4): 8807-8821
    Sirevaag A, de La Rosa S, Fer I, et al. 2011. Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer. Ocean Science Discussions, 7: 335-349
    Steele M, Boyd T. 1998. Retreat of the cold halocline layer in the Arctic Ocean. Journal of Geophysical Research: Oceans (1978-2012), 103(C5): 10419-10435
    Steele M, Ermold W, Zhang J L. 2008. Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters, 35(2): L02614
    Stroeve J, Serreze M, Drobot S, et al. 2008. Arctic sea ice extent plummets in 2007. Eos, Transactions American Geophysical Union, 89(2): 13-14
    Thurnherr A M. 2008. How to process LADCP data with the LDEO software. version IX, 5
  • 加载中
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  31
  • PDF下载量:  948
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-02
  • 修回日期:  2015-06-11

目录

    /

    返回文章
    返回