Statistical characteristics of the surface ducts over the South China Sea from GPS radiosonde data

CHENG Yinhe ZHOU Shengqi WANG Dongxiao LU Yuanzheng YAO Jinglong

成印河, 周生启, 王东晓, 鲁远征, 姚景龙. 基于探空数据的南海表面波导统计特征研究[J]. 海洋学报英文版, 2015, 34(11): 63-70. doi: 10.1007/s13131-015-0749-x
引用本文: 成印河, 周生启, 王东晓, 鲁远征, 姚景龙. 基于探空数据的南海表面波导统计特征研究[J]. 海洋学报英文版, 2015, 34(11): 63-70. doi: 10.1007/s13131-015-0749-x
CHENG Yinhe, ZHOU Shengqi, WANG Dongxiao, LU Yuanzheng, YAO Jinglong. Statistical characteristics of the surface ducts over the South China Sea from GPS radiosonde data[J]. Acta Oceanologica Sinica, 2015, 34(11): 63-70. doi: 10.1007/s13131-015-0749-x
Citation: CHENG Yinhe, ZHOU Shengqi, WANG Dongxiao, LU Yuanzheng, YAO Jinglong. Statistical characteristics of the surface ducts over the South China Sea from GPS radiosonde data[J]. Acta Oceanologica Sinica, 2015, 34(11): 63-70. doi: 10.1007/s13131-015-0749-x

基于探空数据的南海表面波导统计特征研究

doi: 10.1007/s13131-015-0749-x
基金项目: The National Natural Science Foundation of China under contract Nos 41106011, 41176027, 41406131, 41476009 and 41476167; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11030302.

Statistical characteristics of the surface ducts over the South China Sea from GPS radiosonde data

  • 摘要: 基于全球定位系统无线电探空近海面数据,南海近海表面波导进行了统计分析.结果表明,南海近海面波导年发生概率为64%,波导高度和强度主要分布在18-42 m和-0.3—0.2 M units/m,该部分占约80%;南海表面波导日变化缓慢,都超过60%,白天发生次数比黑夜多,但大部分都低于32m.另外,除了波导厚度几乎保持不变约33 m外,南海表面波导各项统计特征季节变化明显,其中发生概率最高为秋季为71%,其次为夏季、春季和冬季.在春季,表面波导顶高大都超过48 m.南海表面波导强度从春季到冬季逐渐变强,其强度梯度变化范围为-0.26—-0.16 M units/m.在考虑数据分辨率情况下,该结果与其他研究成果一致.该南海表面波导统计估计是可靠的,可为海上雷达探测及通信应用系统提供环境支持,也可为沿海气象雷达提供精确有用信息.
  • Babin S M. 1996. Surface duct height distributions for Wallops Island, Virginia, 1985-1994. J Appl Meteor, 35(1): 86-93
    Battan L J. 1973. Radar Observation of the Atmosphere. Chicago: University of Chicago Press, 324
    Bean B B, Dutton W T. 1968. Radio Meteorology. Dover: Dover Publications, 435
    Bech J, Codina B, Lorente J, et al. 2002. Monthly and daily variations of radar anomalous propagation conditions: How “normal” is normal propagation? In: Proceedings of the 2nd European Conference of Radar Meteorology, Delft, Netherlands, ERAD, 35-39
    Bech J, Sairouni A, Codina B, et al. 2000. Weather radar anaprop conditions at a Mediterranean coastal site. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(10-12): 829-832
    Brooks I M, Goroch A K, Rogers D P. 1999. Observations of strong surface radar ducts over the Persian Gulf. J Appl Meteor, 38(9): 1293-1310
    Craig K H, Hayton T G. 1995. Climatic mapping of refractivity parameters from radiosonde data. In: Proceedings of the Conference 567 on Propagation Assessment in Coastal Environments, Bremerhaven, Germany, AGARD-NATO,43: 1-14
    Chen Li, Gao Shanhong, Kang Shifeng, et al. 2009. Statistical analysis on spatial-temporal features of atmospheric ducts over Chinese regional seas. Chinese Journal of Radio Science (in Chinese), 24(4): 702-708
    Cheng Yinhe, Zhou Shengqi, Wang Dongxiao, et al. 2013a. Influence of the monsoon onset on the lower atmospheric ducts over the South China Sea. Journal of Tropical Oceanography (in Chinese), 32(3): 1-8
    Cheng Yinhe, Zhao Zhenwei, Zhang Yusheng. 2012. Statistical analysis of the lower atmospheric ducts during the monsoon period over the South China Sea. Chinese Journal of Radio Science (in Chinese), 27(2): 268-274
    Cheng Yinhe, Zhang Yusheng, Zhao Zhenwei, et al. 2013b. Analysis on the evaporation duct environment near coast of the northern South China Sea in winter. Chinese Journal of Radio Science (in Chinese), 28(4): 697-703
    Cook J. 1991. A sensitivity study of weather data inaccuracies on evaporation duct height algorithms. Radio Science, 26(3): 731-746
    Ding Juli, Fei Jianfang, Huang Xiaogang, et al. 2013. Observational occurrence of tropical cyclone ducts from GPS dropsonde data. J Appl Meteor Climatol, 52(5): 1221-1236
    von Engeln A, Nedoluha G, Teixeira J. 2003. An analysis of the frequency and distribution of ducting events in simulated radio occultation measurements based on ECMWF fields. J Geophys Res, 108(D21): ACL3-1-ACL3-12
    von Engeln A, Teixeira J. 2004. A ducting climatology derived from ECMWF global analysis fields. J Geophys Res, 109(D18): D18104
    Fornasiero, A, Alberoni P P, Bech J. 2006. Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy). Natural Hazards and Earth System Science, 6(2): 303-314
    Freehafer J E. 1988. Tropospheric Refraction, Propagation of Short Radio Wave. Los Altos Hills, America: Peninsula Publishing, 9-22
    Frederickson P A, Murphree J T, Twigg K L, et al. 2008. A modern global evaporation duct climatology. In: Proceedings of the 2008 International Conference on for Radar. Adelaide, S A, Australia: IEEE, 292-296
    Helvey R A. 1983. Radiosonde errors and spurious surface based ducts. Proc. IEEE, 130(7):643-648
    Lin Ye. 1993. A Course in Atmospheric Sounding (in Chinese). Beijing: China Meteorological Press, 151-152
    Liu Chengguo, Huang Jiying, Jiang Changyin. 2002. The occurrence of tropospheric ducts over the south-eastern coast of China. Chinese Journal of Radio Science (in Chinese), 17(5): 509-513
    Liu Chengguo, Pan Zhongwei, Guo Li. 1996. Statistical analysis of occurrence and characteristics of atmospheric ducts in China. Chinese Journal of Radio Science (in Chinese), 11(2): 60-66
    Lin Fajun, Liu Chengguo, Cheng Si, et al. 2005. Statistical analysis of marine atmospheric duct. Chinese Journal of Radio Science (in Chinese), 20(1): 64-68
    Lopez P. 2009. A 5-yr 40-km-resolution global climatology of superrefraction for ground-based weather radars. J Appl Meteor Climatol, 48(1): 89-110
    Mentes Ş, Kaymaz Z. 2007. Investigation of surface duct conditions over Istanbul, Turkey. J Appl Meteor Climatol, 46(3): 318-337
    Moszkowicz S, Ciach G J, Krajewski W F. 1994. Statistical detection of anomalous propagation in radar reflectivity patterns. J Atmos Oceanic Technol, 11(4): 1026-1034
    Patterson W L. 1982. Climatology of marine atmospheric refractive effects: a compendium of the Integrated Refractive Effects Predictions System (IREPS) historical summaries. Naval Research and Development Tech. Doc. 573, 522
    Patterson W L, Hattan C P, Lindem G E, et al. 1994. Engineer's Refractive Effects Prediction System (EREPS). Version 23, Naval Research and Development Tech Doc, 2648, 113
    Skolnik M I, 1980.Introduction to Radar Systems. New York: McGraw-Hill, 581
    Steiner M, Smith J A. 2002. Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J Atmos Oceanic Technol, 19(5): 673-686
    Sun Lu. 2009. Analysis and Preliminary Research with Numerical Simulation of the Atmospheric Duct in the South China Sea (in Chinese). Lanzhou: Lanzhou University
    Tang Haichuang, Wang Hua, Li Yunbo. 2008. Atmospheric duct distribution feature and origin in the partial sea area of Yellow Sea. Ocean Technology (in Chinese), 27(1): 115-117
    Turton J D, Bennetts D A, Farmer S F G. 1988. An introduction to radio ducting. Meteorological Magazine, 117(1393): 245-254
    Xie Qiang, Huang Ke, Wang Dongxiao, et al. 2014. Intercomparison of GPS radiosonde soundings during the eastern tropical Indian Ocean experiment. Acta Oceanologica Sinica, 33(1): 127-314
    Zhao Xiaofeng, Wang Dongxiao, Huang Sixun, et al. 2013. Statistical estimations of atmospheric duct over the South China Sea and the tropical eastern Indian Ocean. Chinese Science Bulletin, 58(23): 2794-2797
    Zhu M, Atkinson B W. 2005. Simulated climatology of atmospheric ducts over the Persian Gulf. Bound-Lay Meteorol, 115(3): 433-452
  • 加载中
计量
  • 文章访问数:  2741
  • HTML全文浏览量:  672
  • PDF下载量:  1317
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-06-08

目录

    /

    返回文章
    返回