Modeling the interaction of an internal solitary wave with a sill

LI Qun XU Zhenhua YIN Baoshu BAI Tao LIU Kun WANG Yang

李群, 徐振华, 尹宝树, 白涛, 刘昆, 王洋. 内孤立波与海脊相互作用的模拟研究[J]. 海洋学报英文版, 2015, 34(11): 32-37. doi: 10.1007/s13131-015-0745-1
引用本文: 李群, 徐振华, 尹宝树, 白涛, 刘昆, 王洋. 内孤立波与海脊相互作用的模拟研究[J]. 海洋学报英文版, 2015, 34(11): 32-37. doi: 10.1007/s13131-015-0745-1
LI Qun, XU Zhenhua, YIN Baoshu, BAI Tao, LIU Kun, WANG Yang. Modeling the interaction of an internal solitary wave with a sill[J]. Acta Oceanologica Sinica, 2015, 34(11): 32-37. doi: 10.1007/s13131-015-0745-1
Citation: LI Qun, XU Zhenhua, YIN Baoshu, BAI Tao, LIU Kun, WANG Yang. Modeling the interaction of an internal solitary wave with a sill[J]. Acta Oceanologica Sinica, 2015, 34(11): 32-37. doi: 10.1007/s13131-015-0745-1

内孤立波与海脊相互作用的模拟研究

doi: 10.1007/s13131-015-0745-1
基金项目: The National Natural Science Foundation of China under contract Nos 41528601 and 41376029; the Youth Innovation Promotion Association of Chinese Academy of Sciences under contract No. Y4KY07103L, the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11020101.

Modeling the interaction of an internal solitary wave with a sill

  • 摘要: 本研究采用一个非静压的数值模型来研究二层流体下内孤立波与海脊的相互作用过程.流体根据阻塞参数的大小可以分为三种情形:(1)当参数小于0.5时,地形对内孤立波的传播和空间结构影响较小;(2)当参数介于0.5和0.7之间时,受到地形的阻塞效应,内孤立波显著变形但没有破碎;(3)当参数大于0.7时,内孤立波遇到和经过底地形时发生破碎.数值模拟结果与其他实验结果取得很好一致.阻塞参数约等于0.7时内孤立波的破碎过程得到了很好的呈现.在参数小于0.7时,内孤立波耗散率与阻塞参数呈线性关系,当参数达到1.0时,耗散率取得最大值约34%,而参数大于1.0时,内波会发生更多的反射而不是破碎.在参数位于1.0左右时,破碎引发的混合效率最为显著,最高可达到0.16.
      关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Apel J R, Holbrook J R, Liu A K, et al. 1985. The Sulu Sea internal soliton experiment. J Phys Oceanogr, 15(12): 1625-1651
    Chen Chenyuan. 2007. An experimental study of stratified mixing caused by internal solitary waves in a two-layered fluid system over variable seabed topography. Ocean Engineering, 34(14-15): 1995-2008
    Chen Chenyuan, Hsu J R-C, Chen H-H, et al. 2007. Laboratory obser-vations on internal solitary wave evolution on steep and in-verse uniform slopes. Ocean Engineering, 34(1): 157-170
    Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press, 138-142 Grue J, Jensen A, Rus.s P-O, et al. 2000. Breaking and broadening of internal solitary waves. J Fluid Mech, 413: 181-217
    Guo Yakun, Sveen J K, Davies P A, et al. 2005. Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Environmental Fluid Mechanics, 4(4): 415-441
    Helfrich K R. 1992. Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech, 243: 133-154 Helfrich K R, Melville W K. 1986. On long nonlinear internal waves over slope-shelf topography. J Fluid Mech, 167: 285-308
    Hüttemann H, Hutter K. 2001. Baroclinic solitary water in a two-layer fluid system with diffusive interface. Exp Fluids, 30(3): 317-326
    Ivey G N, Nokes R I. 1989. Vertical mixing due to the breaking of crit-ical internal waves on sloping boundaries. J Fluid Mech, 204: 479-500
    Kuo C F. 2005. Experimental study on the evolution and effect of bot-tom obstacle on internal solitary wave[dissertation]. Taiwan: National Sun Yat-Sen University
    Liu A K, Chang Y S, Hsu M-K, et al. 1998. Evolution of nonlinear in-ternal waves in the East and South China Seas. J Geophys Res, 103(C4): 7995-8008, doi: 10.1029/97JC01918
    Michallet H, Ivey G N. 1999. Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res, 104(C6): 13467-13477
    Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res Pt I, 45(12): 1977-2010 Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451-460
    Rickard G, O'Cllaghan J, Popinet S. 2009. Numerical simulations of internal solitary waves interacting with uniform slopes using an adaptive model. Ocean Modelling, 30(1): 16-28
    Sandstrom H, Elliot J A. 1984. Internal tide and solitons on the Sco-tian Shelf: A nutrient pump at work. J Geophys Res, 89(C4): 6415-6426
    Slinn D N, Riley J J. 1996. Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain. Dynamics of Atmospheres and Oceans, 24(1-4): 51-62
    Sveen J K, Guo Yakun, Davies P A, et al. 2002. On the breaking of in-ternal solitary waves at a ridge. J Fluid Mech, 469: 161-188
    Vlasenko V I, Hutter K. 2002. Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J Phys Oceanogr, 32(6): 1779-1793
    Wessels F, Hutter K. 1996. Interaction of internal waves with a topo-graphic sill in a two-layered fluid. J Phys Oceanogr, 26(1): 5-20
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2010. A study of internal solitary waves observed on the continental shelf in the north-western South China Sea. Acta Oceanol Sin, 29: 18-25
    Xu Zhenhua, Yin Baoshu, Hou Yijun. 2010. Highly nonlinear internal solitary waves over the continental shelf of the northwestern South China Sea. Chin J Oceanol Limonol, 28(5): 1049-1054
    Xu Zhenhua, Yin Baoshu, Hou Yijun. 2011. Response of internal solit-ary waves to tropical storm Washi in the northwestern South China Sea. Ann Geophys, 29: 2181-2187, doi: 10.5194/angeo-29-2181-2011
    Yuan Yeli, Zheng Quan'an, Dai Dejun, et al. 2006. Mechanism of in-ternal waves in the Luzon Strait. J Geophys Res, 111(C11): C11S17, doi: 10.1029/2005JC003198
    Zhao Zhongxiang, Alford M H. 2006. Source and propagation of in-ternal solitary waves in the northeastern South China Sea. J Geophys Res, 111(C11): C11012, doi: 10.1029/2006JC003644
    Zhao Zhongxiang, Alford M H, MacKinnon J A, et al. 2010. Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J Phys Oceanogr, 40(4): 713-736, doi: 10.1175/2009JPO4207.1
    Zheng Quan'an, Susanto R D, Ho C-R, et al. 2007. Statistical and dy-namical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J Geophys Res, 112(C3): C03021, doi: 10.1029/2006JC003551
    Zheng Quan'an, Zhu Benlu, Li Junyi, et al. 2015. Growth and dissipa-tion of typhoon-forced solitary continental shelf waves in the northern South China Sea. Climate Dyn, 45(3): 853-865, doi: 10.1007/s00382-014-2318-y
  • 加载中
计量
  • 文章访问数:  1527
  • HTML全文浏览量:  38
  • PDF下载量:  1409
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-06-14

目录

    /

    返回文章
    返回