Observations of upper layer turbulent mixing in the southern South China Sea

SHANG Xiaodong QI Yongfeng CHEN Guiying LIANG Changrong

尚晓东, 戚永锋, 陈桂英, 梁长荣. 南海南部上层的湍流混合特征[J]. 海洋学报英文版, 2015, 34(11): 6-13. doi: 10.1007/s13131-015-0743-3
引用本文: 尚晓东, 戚永锋, 陈桂英, 梁长荣. 南海南部上层的湍流混合特征[J]. 海洋学报英文版, 2015, 34(11): 6-13. doi: 10.1007/s13131-015-0743-3
SHANG Xiaodong, QI Yongfeng, CHEN Guiying, LIANG Changrong. Observations of upper layer turbulent mixing in the southern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(11): 6-13. doi: 10.1007/s13131-015-0743-3
Citation: SHANG Xiaodong, QI Yongfeng, CHEN Guiying, LIANG Changrong. Observations of upper layer turbulent mixing in the southern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(11): 6-13. doi: 10.1007/s13131-015-0743-3

南海南部上层的湍流混合特征

doi: 10.1007/s13131-015-0743-3
基金项目: The “CAS/SAFEA International Partnership Program for Creative Research Teams” of Chinese Academy of Seiences under contract Nos XDA11010202, 2013CB430303 and 41376022, 41276021 and 41276023.

Observations of upper layer turbulent mixing in the southern South China Sea

  • 摘要: 基于2012年8月在中国南海10oN海域进行的微尺度湍流观察资料,分析了650米以浅的湍流混合特征.结果表明在该纬度南海的涡扩散系数要比相同纬度的开阔大洋大一个量级,而强流速剪切及粗糙地形是造成南海南部海域混合增强的主要机制.上混合层最大涡扩散系数可达10-2m2/s量级;温跃层阻隔了上混合层强混合向下传递,涡扩散系数最弱;温跃层以下,背景涡扩散系数约为10-6m2/s量级,其随着深度的增大而增加,最大可达10-3m2/s量级.
  • Alford M H, Klymak J M, Carter G S. 2014. Breaking internal lee waves at Kaena Ridge, Hawaii. Geophysical Research Letters, 41(3): 906-912
    Callaghan A H, Ward B, Vialard J. 2014. Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 94: 107-123
    Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29: 11051130
    Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41: 253-282
    Garrett C. 2003. Internal tides and ocean mixing. Science, 301(5641): 1858-1859
    Gayen B, Sarkar S. 2013. Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline. Journal of Geophysical Research: Oceans, 118(9): 4689-4698
    Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422(6931): 513-515
    Hibiya T, Nagasawa M. 2004. Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophysical Research Letters, 31: L01301
    Jan S, Chern C S, Wang J, et al. 2007. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. Journal of Geophysical Research, 112: C06019
    Klymak J M, Gregg M C. 2004. Tidally generated turbulence over the Knight Inlet sill. Journal of Physical Oceanography, 34(5): 1135-1151
    Kunze E, Firing E, Hummon M J, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36(8): 1553-1576
    Laurent L S, Schmitt R W. 1999. The contribution of salt fingers to vertical mixing in the north Atlantic tracer release experiment. Journal of Physical Oceanography, 29(7): 1404-1424
    Liu Zhiyu, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chinese Science Bulletin, 57(18): 2302-2306
    Lu Yuanzheng, Zhou Shengqi, Cen Xianrong, et al. 2014. Salt finger and turbulence mixing in the upper layer of the central South China Sea. Oceanologia et Limnologia Sinica (in Chinese), 45(6): 1159-1167
    Melet A, Hallberg R, Legg S, et al. 2013. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43(3): 602-615
    Melet A, Hallberg R, Legg S, et al. 2014. Sensitivity of the ocean state to lee waves-driven mixing. Journal of Physical Oceanography, 44(3): 900-921
    Moum J N, Caldwell D R, Paulson C A. 1989. Mixing in the equatorial surface layer and thermocline. Journal of Geophysical Research: Oceans, 94(C2): 2005-2022
    Müller P, Holloway G, Henyey F, et al. 1986. Nonlinear interactions among internal gravity waves. Reviews of Geophysics, 24(3): 493-536
    Nasmyth P. 1970. Oceanic turbulence [dissertation]. Vancouver: University of British Columbia, 69
    Naveira Garabato A C, Polzin K L, King B A, et al. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science, 303(5655): 210-213
    Nikurashin M, Ferrari R. 2010. Radiation and dissipation of internal waves generated by geostrophic motions impinging on smallscale topography: Theory. Journal of Physical Oceanography, 40(5): 1055-1074
    Nikurashin M, Vallis G, Adcroft A. 2013. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nature Geoscience, 6(1): 48-51
    Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1): 83-89
    Peters H, Gregg M C, Toole J M. 1988. On the parameterization of equatorial turbulence. Journal of Geophysical Research- Oceans, 93(C2): 1199-1218
    Ruddick B. 1983. A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Research Part A: Oceanographic Research Papers, 30(10): 1105-1107
    Schmitt R W, Ledwell J R, Montgomery E T, et al. 2005. Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science, 308(5722): 685-688
    Shang Xiaodong, Liu Qian, Xie Xiaohui, et al. 2015. Source and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Research Part I: Oceanographic Reseach Papers, 98:43-52
    Shay T J, Gregg M C. 1986. Convectively driven turbulent mixing in the upper ocean. Journal of Physical Oceanography, 16(11): 1777-1798
    St Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35: L23615
    St Laurent L, Garrett C. 2002. The role of internal tides in mixing the deep ocean. Journal of Physical Oceanography, 32(10): 2882-2899
    Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12): 3191-3203
    Tian Jiwei, Zhou Lei, Zhang Xiaoqian. 2006. Latitudinal distribution of mixing rate caused by the M2 internal tide. Journal of Physical Oceanography, 36(1): 35-42
    Whalen C B, Talley L D, MacKinnon J A. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophysical Research Letters, 39: L18612
    Wolk F, Yamazaki H, Seuront L, et al. 2002. A new free-fall profiler for measuring biophysical microstructure. Journal of Atmospheric and Oceanic Technology, 19(5): 780-793
    Yang Qingxuan, Tian Jiwei, Zhao Wei, et al. 2014. Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 87: 43-52
    You Yuzhu. 2002. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure. Deep-Sea Research Part I: Oceanographic Research Papers, 49(11): 2075-2093
    Zhao Zhongxiang, Alford M H. 2006. Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research-Oceans, 111: C11012
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览量:  42
  • PDF下载量:  1233
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-06-02

目录

    /

    返回文章
    返回