The seasonal variations in the significant wave height and sea surface wind speed of the China's seas

ZHENG Chongwei PAN Jing TAN Yanke GAO Zhansheng RUI Zhenfeng CHEN Chaohui

郑崇伟, 潘静, 谭言科, 高占胜, 芮震峰, 陈超辉. 中国海域有效波高、海表风速长期变化趋势的季节特征[J]. 海洋学报英文版, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0
引用本文: 郑崇伟, 潘静, 谭言科, 高占胜, 芮震峰, 陈超辉. 中国海域有效波高、海表风速长期变化趋势的季节特征[J]. 海洋学报英文版, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0
ZHENG Chongwei, PAN Jing, TAN Yanke, GAO Zhansheng, RUI Zhenfeng, CHEN Chaohui. The seasonal variations in the significant wave height and sea surface wind speed of the China's seas[J]. Acta Oceanologica Sinica, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0
Citation: ZHENG Chongwei, PAN Jing, TAN Yanke, GAO Zhansheng, RUI Zhenfeng, CHEN Chaohui. The seasonal variations in the significant wave height and sea surface wind speed of the China's seas[J]. Acta Oceanologica Sinica, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0

中国海域有效波高、海表风速长期变化趋势的季节特征

doi: 10.1007/s13131-015-0738-0

The seasonal variations in the significant wave height and sea surface wind speed of the China's seas

  • 摘要: 海表风速、有效波高的长期变化趋势与全球气候变化、防灾减灾、海洋能开发等密切相关。本文利用CCMP风场驱动WW3海浪模式,模拟得到近24年(1988-2011年)的中国近海海浪场数据。利用CCMP风场、模拟海浪数据,分析了中国海域海表风速、有效波高长期变化趋势的季节特征。结果表明:(1)在近24年期间,中国海的海表风速、有效波高都表现出显著性逐年递增,趋势分别为:3.38 cm/(s·a)、1.3 cm/a。(2)整体来看,海表风速、有效波高在春季、冬季的递增趋势最强,夏季次之,秋季的递增趋势相对最弱。(3)春季,海表风速呈递增趋势的范围为全年最广,夏季和冬季呈递增的范围有所缩小,秋季呈递增的范围为全年最小。与海表风速不同,在春季和冬季,整个中国海范围的有效波高都表现出显著的递增趋势,夏季和秋季呈递增的范围有所缩小。渤海、黄海、东海、对马海峡、台湾海峡、南海北部海域、北部湾、泰国湾的海表风速、有效波高在各个季节都表现出显著的递增趋势。(4)在不同海域,海表风速、有效波高的变化趋势由不同季节主导。呈强劲递增趋势的海域,海表风速和有效波高的变化趋势通常由冬季主导。
  • Atlas R, Hoffman R N, Ardizzone J, et al. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. American Meteorological Society, 92: 157-174, doi: 10.1175/2010BAMS2946.1
    Chen W, Hans F G, Huang R H. 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Advances in Atmospheric Sciences, 17: 46-60
    Chu P C, Qi Y Q, Chen Y C, et al. 2004. South China Sea wind-wave characteristics: Part I. Validation of WAVEWATCH-Ⅲ using TOPEX/Poseidon data. Journal of Atmospheric and Oceanic Technology, 21: 1718-1733
    Earl N, Dorling S, Hewston R, et al. 2013. 1980-2010 variability in U.K. surface wind climate. Journal of Climate, 26: 1172-1191
    Gower J F R. 2002. Temperature, wind and wave climatologies, and trends from marine meteorological buoys in the northeast Pacific. Journal of Climate, 15: 3709-3718
    Guillaume D, Bertin X, Taborda R. 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling, 31(3-4): 120-131
    Gulev S K, Grigotieva V. 2006. Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. Journal of Climate, 19: 5667-5685
    Han S Z, Zhang H R, Zhang Y X. 2014. A global study of temporal and spatial variation of SWH and wind speed and their correlation. Acta Oceanologica Sinica, 33(11): 48-54
    Huang G, Qu X, Hu K M. 2011. The impact of the tropical Indian Ocean on South Asian High in boreal summer. Advances in Atmospheric Sciences, 28(2): 421-432
    Li C Y. 1990. Interaction between anomalous winter monsoon in East Asia and El Nino events. Advances in Atmospheric Sciences, 7(1): 36-46
    Mirzaei A, Tangang F, Juneng L, et al. 2013. Wave climate simulation for southern region of the South China Sea. Ocean Dynamics, 63(8): 961-977
    Ren L, Yang J S, Zheng G, et al. 2015. Wave effects on the retrieved wind field from the advanced scatterometer (ASCAT). Acta Oceanologica Sinica, 34(1): 79-84
    Soomere T, Raamet A. 2011. Long-term spatial variations in the Baltic Sea wave fields. Ocean Science, 7: 141-150
    Suarez J M, Cicin-Sain B, Wowk K, et al. 2013. Ensuring survival: oceans, climate and security. Ocean and Coastal Management, 90: 27-37
    Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332 (6028): 451-455
    Zheng Y, Jiang X W, Song Q T, et al. 2014. Coastal wind field retrieval from polarimetric synthetic aperture radar. Acta Oceanologica Sinica, 33(5): 54-61
    Zheng C W, Li C Y. 2015. Variation of the wave energy and significant wave height in the China Sea and adjacent waters. Renewable and Sustainable Energy Reviews, 43: 381-387
    Zheng C W, Pan J. 2014. Assessment of the global ocean wind energy resource. Renewable and Sustainable Energy Reviews, 33: 382-391
    Zheng C W, Pan J, Huang G. 2014. Forecasting of the China Sea ditching probability using WW3 wave model. Journal of Beijing University of Aeronautics and Astronautics, 40(3): 341-320
    Zheng C W, Pan J, Li J X. 2013. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65: 39-48
    Zheng C W, Shao L T, Shi W L, et al. 2014. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanologica Sinica, 33(1): 92-101
    Zheng C W, Zhou L, Huang C F. 2013. The long-term trend of a sea surface wind speed and a (wind wave, swell, mixed wave) wave height in global ocean during the last 44 a. Acta Oceanologica Sinica, 32(10): 1-4
  • 加载中
计量
  • 文章访问数:  1659
  • HTML全文浏览量:  121
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-01
  • 修回日期:  2015-03-04

目录

    /

    返回文章
    返回