Shoaling of the internal solitary waves over the continental shelf of the northern South China Sea

QIAN Hongbao HUANG Xiaodong TIAN Jiwei ZHAO Wei

钱洪宝, 黄晓冬, 田纪伟, 赵玮. 南海北部陆架区内孤立波向岸传播过程研究[J]. 海洋学报英文版, 2015, 34(9): 35-42. doi: 10.1007/s13131-015-0734-4
引用本文: 钱洪宝, 黄晓冬, 田纪伟, 赵玮. 南海北部陆架区内孤立波向岸传播过程研究[J]. 海洋学报英文版, 2015, 34(9): 35-42. doi: 10.1007/s13131-015-0734-4
QIAN Hongbao, HUANG Xiaodong, TIAN Jiwei, ZHAO Wei. Shoaling of the internal solitary waves over the continental shelf of the northern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(9): 35-42. doi: 10.1007/s13131-015-0734-4
Citation: QIAN Hongbao, HUANG Xiaodong, TIAN Jiwei, ZHAO Wei. Shoaling of the internal solitary waves over the continental shelf of the northern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(9): 35-42. doi: 10.1007/s13131-015-0734-4

南海北部陆架区内孤立波向岸传播过程研究

doi: 10.1007/s13131-015-0734-4

Shoaling of the internal solitary waves over the continental shelf of the northern South China Sea

  • 摘要: 南海北部是全球海洋中内孤立波最强和最为活跃的海域。然而,内孤立波在传入陆架区后,其形态发生显著变化,其传播演变过程表现出高度的复杂性。本研究综合卫星图像和数值模式手段研究了内孤立波在向岸传播过程中的空间变化特征。可见光卫星图像研究结果显示,南海北部陆架区存在三种形态的内孤立波,分别为第一模态下凹型内孤立波、第一模态上凸型内孤立波和第二模态内孤立波。受水深和层结变化的控制,它们的分布区域显著不同。基于MITgcm的数值模拟研究表明,上凸型内孤立波由第一模态下凹内孤立波经过极性转换过程发展而来,而第二模态内孤立波由第一模态下凹内孤立波与急剧变浅地形相互作用而产生。
  • Alford M H, Lien R -C, Simmons H, et al. 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6): 1338-1355
    Apel J R, Holbrook J R, Liu A K, et al. 1985. The Sulu Sea internal soliton experiment. Journal of Physical Oceanography, 15(12): 1625-1651
    Apel J R, Ostrovsky L A, Stepanyants Y A, et al. 2007. Internal solitons in the ocean and their effect on underwater sound. Acoustical Society of America Journal, 121(2): 695
    Buijsman M C, Uchiyama Y, McWilliams J C, et al. 2012. Modeling semidiurnal internal tide variability in the Southern California Bight. Journal of Physical Oceanography, 42(1): 62-77
    Cai Shuqun, Xie Jieshuo, He Jianling. 2012. An overview of internal solitary waves in the South China Sea. Surveys in Geophysics, 33(5): 927-943
    Chen Zhiwu, Xie Jieshuo, Wang Dongxiao, et al. 2014. Density stratification influences on generation of different modes internal solitary waves. Journal of Geophysical Research: Oceans, 119(10): 7029-7046
    Farmer D, Li Qiang, Park J-H. 2009. Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmosphere- Ocean, 47(4): 267-280
    Flather R A. 1976. A tidal model of the north-west European continental shelf. Mem Soc Roy Sci Liege, Ser 6, 10: 141-164
    Haury L R, Briscoe M G, Orr M H. 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature, 278(5702): 312-317
    Helfrich K R, Grimshaw R H J. 2008. Nonlinear disintegration of the internal tide. Journal of Physical Oceanography, 38(3): 686-701
    Jan S, Lien R-C, Ting Chihua. 2008. Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 64(5): 789-802
    Klymak J M, Pinkel R, Liu C-T, et al. 2006. Prototypical solitons in the South China Sea. Geophysical Research Letters, 33(11): L11607
    Lee Chiyuan, Beardsley R C. 1974. The generation of long nonlinear internal waves in a eeakly stratified shear flow. J Geophys Res, 79(3): 453-462
    Li Qiang, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7): 1345-1363
    Lien R-C, D'Asaro E A, Henyey F, et al. 2012. Trapped core formation within a shoaling nonlinear internal wave. Journal of Physical Oceanography, 42(4): 511-525
    Marshall J, Adcroft A, Hill C, et al. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res, 102(C3): 5753-5766
    Mitnik L, Alpers W, Chen K S, et al. 2000. Manifestation of internal solitary waves on ERS SAR and SPOT images: similarities and differences. In: Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Sym posium (IGARSS'00). Honolulu, HI: IEEE, 5: 1857-1859
    Moore S E, Lien R-C. 2007. Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science, 23(1): 193-196
    Moum J N, Klymak J M, Nash J D, et al. 2007. Energy transport by nonlinear internal waves. Journal of Physical Oceanography, 37(7): 1968-1988
    Orr M H, Mignerey P C. 2003. Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves. Journal of Geophysical Research, 108(C3): 3064
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451-460
    Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157-1181
    St Laurent L, Simmons H, Tang T Y, et al. 2011. Turbulent properties of internal waves in the South China Sea. Oceanography, 24(4): 78-87
    Stanton T P, Ostrovsky L A. 1998. Observations of highly nonlinear internal solitons over the continental shelf. Geophys Res Lett, 25(14): 2695-2698
    Yang Y J, Fang Y C, Chang M-H, et al. 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. J Geophys Res, 114(C10): C10003
    Yang Y J, Fang Y C, Tang T Y, et al. 2010. Convex and concave types of second baroclinic mode internal solitary waves. Nonlinear Pro-cesses in Geophysics, 17(6): 605-614
    Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys Res Lett, 31(6): L06302
    Zhao Zhongxiang, Klemas V V, Zheng Quanan, et al. 2003. Satellite observation of internal solitary waves converting polarity. Geophysical Research Letters, 30(19): 1988
  • 加载中
计量
  • 文章访问数:  1216
  • HTML全文浏览量:  58
  • PDF下载量:  1186
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-23
  • 修回日期:  2015-02-12

目录

    /

    返回文章
    返回