Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings

CHEN Binbin ZOU Dinghui

陈斌斌, 邹定辉. 海水盐度变化影响裂片石莼(Ulva fasciata)(Ulvales, Chlorophyta)幼体的生长和光合作用[J]. 海洋学报英文版, 2015, 34(8): 108-113. doi: 10.1007/s13131-015-0654-3
引用本文: 陈斌斌, 邹定辉. 海水盐度变化影响裂片石莼(Ulva fasciata)(Ulvales, Chlorophyta)幼体的生长和光合作用[J]. 海洋学报英文版, 2015, 34(8): 108-113. doi: 10.1007/s13131-015-0654-3
CHEN Binbin, ZOU Dinghui. Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings[J]. Acta Oceanologica Sinica, 2015, 34(8): 108-113. doi: 10.1007/s13131-015-0654-3
Citation: CHEN Binbin, ZOU Dinghui. Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings[J]. Acta Oceanologica Sinica, 2015, 34(8): 108-113. doi: 10.1007/s13131-015-0654-3

海水盐度变化影响裂片石莼(Ulva fasciata)(Ulvales, Chlorophyta)幼体的生长和光合作用

doi: 10.1007/s13131-015-0654-3
基金项目: The National Natural Science Foundation of China under contract Nos 41276148 and 41076094.

Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings

  • 摘要: 海水盐度在很大程度上受到潮汐、蒸发作用以及降水等的影响.本实验研究了在短时(数分钟)或长时(数天)的不同盐度处理条件下,裂片石莼(Ulva fasciata Delile)幼体的生长及光合作用响应,并评估海水盐度变化对裂片石莼生活史早期阶段的影响.结果表明,经短时间(数分钟)的低盐(25和15)或高盐海水(45)处理后,裂片石莼幼体的最大净光合作用速率(NPRm)均显著下降.但30 min后,在盐度25海水条件下,裂片石莼幼体仍保持较高的光合作用活性(70%以上).经过8 d的长时间培养,在盐度从34降低至15时,裂片石莼幼体的光合作用及相对生长速率(RGR)均显著降低,但藻体中的丙二醛(MDA)含量却逐渐增加.当盐度从34下降至25时,裂片石莼幼体的RGR的差异性不显著,但却显著地影响了幼体的形态特征.高盐条件(45)显著地降低了裂片石莼幼体的RGR及光合作用活性,却增加了藻体的MDA含量.海水盐度增加对裂片石莼幼体具有比海水淡化更大的毒害作用.无论短时或长时间培养,生长于25至34海水盐度范围内的裂片石莼幼体均表现出较好的光合适应性.裂片石莼幼体对盐度(25至34)的广泛耐受性在一定程度上与其对周期性潮汐变化的长期适应有关.
  • Ahmad I, Hellebust J A. 1988. The relationship between inorganic ni-trogen metabolism and proline accumulation in osmoregulat-ory responses of two euryhaline microalgae. Plant Physiology, 88(2): 348-354
    Bisson M A, Kirst G O. 1979. Osmotic adaption in the marine alga Griffithsia monilis (Rhodophyceae): the role of ions and organ-ic compounds. Australian Journal of Plant Physiology, 6(4): 523-538
    Bowler C, van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43: 83-116
    Chang W-C, Chen M-H, Lee T-M. 1999. 2, 3, 5 triphenyltetrazolium chloride reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress. Botanical Bulletin Academia Sinica, 40: 207-212
    Corney H J, Sasse J M, Ades P K. 2003. Assessment of salt tolerance in eucalypts using chlorophyll fluorescence attributes. New Forests, 26(3): 233-246
    Davison I R, Pearson G A. 1996. Stress tolerance in intertidal sea-weeds. Journal of Phycology, 32(2): 197-211 Dawes C J. 1998. Marine Botany. 2nd ed. New York: John Wiley & Sons, Inc, 82-85 Dickson D M, Wyn Jones R G, Davenport J. 1980. Steady state osmot-ic adaptation in Ulva lactuca. Planta, 150(2): 158-165
    Durack P J, Wijffels S E, Matear R J. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080): 455-458
    Florides G A, Christodoulides P. 2009. Global warming and carbon dioxide through sciences. Environment International, 35(2): 390-401
    Gessner E, Schramm W. 1971. Salinity: plants. In: Kinne O, ed. Mar-ine Ecology. Volume 1. London: Wiley-Interscience, 705-720
    González-Moreno S, Gómez-Barrera J, Perales H, et al. 1997. Mul-tiple effects of salinity on photosynthesis of the protist Euglena gracilis. Physiologia Plantarum, 101(4): 777-786
    Heath R L, Packer L. 1968. Photoperoxidation in isolated chloro-plasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1): 189-198
    Hellebust J A. 1976. Effect of salinity on photosynthesis and mannitol synthesis in the green flagellate Platymonas suecica. Canadian Journal of Botany, 54(15): 1735-1741
    Henley W J. 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology, 29(6): 729-739
    Hiraoka M, Oka N. 2008. Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. Journal of Ap-plied Phycology, 20(1): 97-102
    Huang Qing, Shen Hanming. 2009. To die or to live: the dual role of poly (ADP-ribose) polymerase-1 in autophagy and necrosis un-der oxidative stress and DNA damage. Autophagy, 5(2): 273-276
    IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: Synthesis Report. Cambridge, UK: Cambridge University Press
    Lartigue J, Neill A, Hayden B L, et al. 2003. The impact of salinity fluc-tuations on net oxygen production and inorganic nitrogen up-take by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75 (4): 339-350
    Lee Y-H, Kim D-J, Kim H-K. 2003. Characteristics of the seawater quality variation on the South Coastal Area of Korea. KSCE Journal of Civil Engineering, 7(2): 123-130
    Liu Jingwen, Dong Shuangxiu, Ma Shen. 2001. Effects of temperature and salinity on growth of G. tenuistipitata var. liui, U. pertusa, G. filicina and NH4-N uptake of G. tenuistipitata var. liui. Haiy-ang Xuebao (in Chinese), 23(2): 109-116
    Lu Congming, Vonshak A. 2002. Effects of salinity stress on photosys-tem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114(3): 405-413
    Mantri V A, Singh R P, Bijo A J, et al. 2011. Differential response of varying salinity and temperature on zoospore induction, regen-eration and daily growth rate in Ulva fasciata (Chlorophyta, Ul-vales). Journal of Applied Phycology, 23(2): 243-250
    Ohno M. 2006. Recent developments in the seaweed cultivation and industry in Japan. In: Phang S M, Critchley A T, Ang P O, et al., eds. Advances in Seaweed Cultivation and Utilisation in Asia. Kuala Lumpur: University of Malaya Maritime Research Center, 1-20
    Richter M, Rühle W, Wild A. 1990. Studies on the mechanism of pho-tosystem II photoinhibition I. A two-step degradation of D1-protein. Photosynthesis Research, 24(3): 229-235
    Satoh K, Smith C M, Fork D C. 1983. Effects of salinity on primary pro-cesses of photosynthesis in the red alga Porphyra perforata. Plant Physiology, 73(3): 643-647
    Schmitt R W. 1996. If rain falls on the ocean-does it make a sound? Fresh water's effect on ocean phenomena. Oceanus, 39(2): 4-8
    Steen H. 2004. Effects of reduced salinity on reproduction and germling development in Sargassum muticum (Phaeophyceae, Fucales). European Journal of Phycology, 39(3): 293-299
    Wong C-L, Phang S-M. 2004. Biomass production of two Sargassum species at Cape Rachado, Malaysia. Hydrobiologia, 512(1-3): 79-88
    Xia Jianrong, Li Yongjun, Zou Dinghui. 2004. Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany, 80(2): 129-137
    Yamochi S. 2013. Effects of desiccation and salinity on the outbreak of a green tide of Ulva pertusa in a created salt marsh along the coast of Osaka Bay, Japan. Estuarine, Coastal and Shelf Science, 116: 21-28
    Ying Weihai, Alano C C, Garnier P, et al. 2005. NAD+ as a metabolic link between DNA damage and cell death. Journal of Neuros-cience Research, 79(1-2): 216-223
  • 加载中
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  68
  • PDF下载量:  1062
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 修回日期:  2015-01-08

目录

    /

    返回文章
    返回