Deep water distribution and transport in the Nordic seas from climatological hydrological data

HE Yan ZHAO Jinping LIU Na WEI Zexun LIU Yahao LI Xiang

HEYan, ZHAOJinping, LIUNa, WEIZexun, LIUYahao, LIXiang. 利用气候态水文数据Hydrobase II分析北欧海深层水的分布与输运[J]. 海洋学报英文版, 2015, 34(3): 9-17. doi: 10.1007/s13131-015-0629-4
引用本文: HEYan, ZHAOJinping, LIUNa, WEIZexun, LIUYahao, LIXiang. 利用气候态水文数据Hydrobase II分析北欧海深层水的分布与输运[J]. 海洋学报英文版, 2015, 34(3): 9-17. doi: 10.1007/s13131-015-0629-4
HE Yan, ZHAO Jinping, LIU Na, WEI Zexun, LIU Yahao, LI Xiang. Deep water distribution and transport in the Nordic seas from climatological hydrological data[J]. Acta Oceanologica Sinica, 2015, 34(3): 9-17. doi: 10.1007/s13131-015-0629-4
Citation: HE Yan, ZHAO Jinping, LIU Na, WEI Zexun, LIU Yahao, LI Xiang. Deep water distribution and transport in the Nordic seas from climatological hydrological data[J]. Acta Oceanologica Sinica, 2015, 34(3): 9-17. doi: 10.1007/s13131-015-0629-4

利用气候态水文数据Hydrobase II分析北欧海深层水的分布与输运

doi: 10.1007/s13131-015-0629-4

Deep water distribution and transport in the Nordic seas from climatological hydrological data

  • 摘要: 北欧海深层水是大西洋深层水的主要来源,它的产生和输运活动对于北极与北大西洋之间的热量和物质交换过程有着十分重要的作用。本文利用气候态水文数据集Hydrobase Ⅱ,对北欧海深层水的分布及其随深层环流运移的情况进行了估算。在根据水文数据计算深层流场的过程中,本文应用了一种新的改进P矢量法,通过引入海表面高度梯度来解决在没有无运动面的海域,传统P矢量法因无法完全消除正压流场残量而不能准确计算绝对地转流的问题。通过水团分析给出了北欧海各主要水团的水体数量、空间分布和季节变化特征,并与前人基于其他水文数据集给出的结果进行了对比。在环流和水团分布的分析基础上,进一步研究了深层水的时空变化与输运,估算出在格陵兰海盆内的深层水存在约为22×103km3的体积季节变化,而在罗弗敦海盆和挪威海盆则要小很多。在格陵兰-罗弗敦海盆和罗弗敦-挪威海盆之间的平均输运量分别约为1.54×103和0.64×103km3/a。海盆间深层水的输运基本是沿着格陵兰-罗弗敦-挪威海盆的方向进行的。
  • Aagaard K, Fahrbach E, Meincke J, et al. 1991. Saline outflow from the Arctic Ocean: its contribution to the Deep Waters of the Greenland, Norwegian, and Iceland Seas. Journal of Geophysical Research, 96(C11): 20433-20441
    Blindheim J. 1990. Arctic intermediate water in the Norwegian Sea. Deep-Sea Research, 37(9): 1475-1489
    Blindheim J, Østerhus S. 2005. The Nordic seas, main oceanographic features. In: Drange H, Dokken T, Furevik T, et al., eds. The Nordic seas: An Integrated Perspective. Washington D C: AGU, 11-37
    Carmack E, Aagaard K. 1973. On the deep water of the Greenland Sea. Deep-Sea Research and Oceanographic Abstracts, 20(8): 687-715
    Chu P C. 1995. P-vector method for determining absolute velocity from hydrographic data. Marine Technology Society Journal, 29(2): 3-14
    Chu P C. 1996. The S-transform for obtaining localized spectra. Marine Technology Society Journal, 29(4): 28-38
    Curry R. 2001. HydroBase 2—A database of hydrographic profiles and tools for climatological analysis. Massachusetts: Woods Hole Oceanographic Institution, 81 Gascard J C, Watson A J, Messias M J, et al. 2002. Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature, 416(6880): 525-527
    Hansen B, Østerhus S. 2000. North Atlantic-Nordic seas exchanges. Progress in Oceanography, 45(2): 109-208
    Helland-Hansen B, Nansen F. 1909. The Norwegian Sea, its physical oceanography based upon the Norwegian researches 1900-1904.
    Report on Norwegian Fishery and Marine-Investigations Vol. 11 No. 2. Norway: Geophysical Institute, University of Bergen Hopkins T S. 1991. The GIN Sea—A synthesis of its physical oceanography and literature review 1972-1985. Earth-Science Reviews, 30(3-4): 175-318
    Hunegnaw A, Siegismund F, Hipkin R, et al. 2009. Absolute flow field estimation for the Nordic seas from combined gravimetric, altimetric, and in situ data. Journal of Geophysical Research: Oceans (1978-2012), 114(C2), doi: 10.1029/2008JC004797
    Meincke J, Jonsson S, Swift J H. 1992. Variability of convective conditions in the Greenland Sea. In: Dickson R R, Maelkki P, Radach G et al., eds. Hydrobiological variability in the ICES area, 1980-1989. Copenhagen (Denmark): ICES, 32-39
    Meincke J, Rudels B, Friedrich H J. 1997. The Arctic Ocean-Nordic seas thermohaline system. ICES Journal of Marine Science, 54(3): 283-299
    Nøst O A, Isachsen P E. 2003. The large-scale time-mean ocean circulation in the Nordic seas and Arctic Ocean estimated from simplified dynamics. Journal of Marine Research, 61(2):175-210
    Orvik K A, Niiler P. 2002. Major pathways of Atlantic water in the northern North Atlantic and Nordic seas toward Arctic. Geophysical Research Letters, 29(19): 2-1-2-4
    Piacsek S, Allard R, McClean J. 2008. Water mass census in the Nordic seas using climatological and observational data sets. Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics, 31(2): 215-240
    Poulain P M, Warn-Varnas A, Niiler P P. 1996. Near-surface circulation of the Nordic seas as measured by Lagrangian drifters. Journal of Geophysical Research, 101(C8):18237-18258
    Rudels B, Friedrich H J, Quadfasel D. 1999. The arctic circumpolar boundary current. Deep-Sea Res II 46(6-7): 1023-1062
    Smethie Jr W M, Ostlund H G, Loosli H H. 1986. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39. Deep Sea Research Part A. Oceanographic Research Papers, 33(5): 675-703
    Stommel H, Schott F. 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep Sea Research, 24(3): 325-329
    Swift J H, Koltermann K P. 1988. The origin of Norwegian Sea Deep Water. Journal of Geophysical Research, 93(C4): 3563-3569
    Voet G, Quadfasel D, Mork K, et al. 2010. The mid-depth circulation of the Nordic seas derived from profiling float observations. Tellus A, 62(4): 516-529
    Zhang Z, Yuan D, Chu P C. 2013. Geostrophic meridional transport in tropical Northwest Pacific based on Argo profiles. Chinese Journal of Oceanology and Limnology, 31(3): 656-664
  • 加载中
计量
  • 文章访问数:  1410
  • HTML全文浏览量:  30
  • PDF下载量:  1448
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-10
  • 修回日期:  2014-08-07

目录

    /

    返回文章
    返回