The uniaxial compressive strength of the Arctic summer sea ice

HAN Hongwei LI Zhijun HUANG Wenfeng LU Peng LEI Ruibo

韩红卫, 李志军, 黄文峰, 卢鹏, 雷瑞波. 北极夏季海冰单轴抗压强度研究[J]. 海洋学报英文版, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7
引用本文: 韩红卫, 李志军, 黄文峰, 卢鹏, 雷瑞波. 北极夏季海冰单轴抗压强度研究[J]. 海洋学报英文版, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7
HAN Hongwei, LI Zhijun, HUANG Wenfeng, LU Peng, LEI Ruibo. The uniaxial compressive strength of the Arctic summer sea ice[J]. Acta Oceanologica Sinica, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7
Citation: HAN Hongwei, LI Zhijun, HUANG Wenfeng, LU Peng, LEI Ruibo. The uniaxial compressive strength of the Arctic summer sea ice[J]. Acta Oceanologica Sinica, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7

北极夏季海冰单轴抗压强度研究

doi: 10.1007/s13131-015-0598-7
基金项目: The National Natural Science Foundation of China under contract No. 41376186; the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of China under contract No. 201205007; the High Technology of Ship Research Project of the Ministry of Industry and Information Technology of China under contract No. 2013417-01; the International Science and Technology Cooperation Program of China under contract No. 2011dFA22260; the International Science and Technology Cooperation Program of the Chinese Arctic and Antarctic Administration, State Oceanic Administration of China under contract No. IC201209.

The uniaxial compressive strength of the Arctic summer sea ice

  • 摘要: 基于中国第五次北极科学考察期间对北极夏季海冰的单轴压缩试验研究, 分析了北极夏季海冰单轴压缩强度变化规律. 单轴压缩试验采用垂直试样, 在不同试验温度(-3, -6 和 -9℃)和加载速率(0.001-1.000 MPa/s)下测试单轴压缩强度;同时测量每个力学试样的温度、密度和盐度用于计算海冰的孔隙率. 在0.01 - 0.03 MPa/s加载速率区间内分析海冰孔隙率和密度对单轴压缩强度的影响规律. 结果表明, 随着海冰孔隙率的增大, 单轴压缩强度呈线性降低趋势;在海冰密度小于0.86 g/cm3时, 海冰单轴压缩强度随着海冰密度的增大呈幂函数增长趋势. 海冰的单轴压缩性质对加载速率敏感, 在韧脆转变区海冰单轴压缩强度达到极大值. 计算不同温度下的韧脆转变区内的平均单轴压缩强度用于分析海冰单轴压缩强度对温度变化的响应. 结果表明, 随着温度的降低单轴压缩强度极大值存在逐渐增大趋势.
  • Cole d M. 1987. Strain rate and grain size effects in ice. Journal of Glaciology, 33(115): 274-280
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35: L01703, doi: 10.1029/2007GL031972
    Cox G F N, Weeks W F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29(102): 306-316
    dutta P K, Cole d M, Schulson E M, et al. 2003. A fracture study of ice under high strain rate loading. In: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA
    Eicken H, Ackley S F, Richter-Menge J A, et al. 1991. Is the strength of sea ice related to its chlorophyll content?. Polar Biology, 11(5): 347-350
    Holland M M, Bitz C M, Tremblay B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33: L23503, doi: 10.1029/2006GL028024
    Huang Wenfeng, Lei Ruibo, Ilkka M, et al. 2013. The physical structures of snow and sea ice in the Arctic section of 150°-180° W during the summer of 2010. Acta Oceanologica Sinica, 32(5): 57-67
    Hunke E C, Notz d, Turner A K, et al. 2011. The multiphase physics of sea ice: a review for model developers. The Cryosphere, 5(4): 989-1009
    Jones S J. 1997. High strain-rate compression tests on ice. The Journal of Physical Chemistry: B, 101(32): 6099-6101
    Kermani M, Farzaneh M, Gagnon R. 2007. Compressive strength of atmospheric ice. Cold Regions Science and Technology, 49(3): 195-205
    Kondo H, Otsuka N, Takeuchi T, et al. 2004. Uniaxial compressive strength of sea ice along the coast of Hokkaido and Sakhalin. In: Proceedings of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok, Russia
    Leppäranta M, Manninen T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Internal Rep 88-2. Helsinki: Finnish Institute for Marine Research
    Li Zhijun, Zhang Limin, Lu Peng, et al. 2011. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai Sea. Science China: Technological Sciences, 54(9): 2429-2436
    Liu M, Kronbak J. 2010. The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. Journal of Transport Geography, 18(3): 434-444
    Moslet P O. 2007. Field testing of uniaxial compression strength of columnar sea ice. Cold Regions Science and Technology, 48(1): 1-14
    Rodrigues J. 2008. The rapid decline of the sea ice in the Russian Arctic. Cold Regions Science and Technology, 54(2): 124-142
    Schulson E M. 2001. Brittle failure of ice. Engineering Fracture Mechanics, 68(17): 1839-1887
    Schwarz J, Frederking R M W, Gavrillo V, et al. 1981. Standardized testing methods for measuring mechanical properties of ice. Cold Regions Science and Technology, 4(3): 245-253
    Sinha N K. 1982. Constant strain and stress-rate compressive strength of columnar-grained ice. Journal of Materials Science, 17(3): 785-802
    Sinha N K. 1984. Uniaxial compressive strength of first-year and multi-year sea ice. Canadian Journal of Civil Engineering, 11(1): 82-91
    Sinha N K. 1988. Experiments on anisotropic and rate-sensitive strain ratio and modulus of columnar-grained ice. Journal of Offshore Mechanics and Arctic Engineering, 111(4): 354-360
    Sjölind S G. 1987. A constitutive model for ice as a damaging visco-elastic material. Cold Regions Science and Technology, 14(3): 247-262
    Sodhi d S, Takeuchi T, Nakazawa N, et al. 1998. Medium-scale indentation tests on sea ice at various speeds. Cold Regions Science and Technology, 28(3): 161-182
    Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34: L09501, doi: 10.1029/2007GL029703
    Timco G W, Frederking R M W. 1990. Compressive strength of sea ice sheets. Cold Regions Science and Technology, 17(3): 227-240
    Timco G W, Frederking R M W. 1996. A review of sea ice density. Cold Regions Science and Technology, 24(1): 1-6
    Timco G W, Weeks W F. 2010. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60(2): 107-129
    Vancoppenolle M, Fichefet T, Goosse H. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice: 2. Importance of sea ice salinity variations. Ocean Modelling, 27(1): 54-69
    Vancoppenolle M, Fichefet T, Goosse H, et al. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice: 1. Model description and validation. Ocean Modelling, 27(1): 33-53
    Verny J, Grigentin C. 2009. Container shipping on the Northern Sea Route. International Journal of Production Economics, 122(1): 107-117
    Yue Qianjin, Ren Xiaohui, Chen Jubin. 2005. The test and mechanism investigation on ductile-brittle transition of sea ice. Journal of Basic Science and Engineering (in Chinese), 13(1): 35-42
    Zhang J, Lindsay R, Steele M, et al. 2008. What drove the dramatic retreat of arctic sea ice during summer 2007?. Geophysical Research Letters, 35: L11505, doi: 10.1029/2008GL034005
  • 加载中
计量
  • 文章访问数:  1473
  • HTML全文浏览量:  55
  • PDF下载量:  1923
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-01
  • 修回日期:  2014-08-29

目录

    /

    返回文章
    返回