The spatiotemporal variation of the wind-induced near-inertial energy flux in the mixed layer of the South China Sea

LI Juan LIU Junliang CAI Shuqun PAN Jiayi

LIJuan, LIUJunliang, CAIShuqun, PANJiayi. 南海混合层近惯性能通量的时空变化[J]. 海洋学报英文版, 2015, 34(1): 66-72. doi: 10.1007/s13131-015-0597-8
引用本文: LIJuan, LIUJunliang, CAIShuqun, PANJiayi. 南海混合层近惯性能通量的时空变化[J]. 海洋学报英文版, 2015, 34(1): 66-72. doi: 10.1007/s13131-015-0597-8
LI Juan, LIU Junliang, CAI Shuqun, PAN Jiayi. The spatiotemporal variation of the wind-induced near-inertial energy flux in the mixed layer of the South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(1): 66-72. doi: 10.1007/s13131-015-0597-8
Citation: LI Juan, LIU Junliang, CAI Shuqun, PAN Jiayi. The spatiotemporal variation of the wind-induced near-inertial energy flux in the mixed layer of the South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(1): 66-72. doi: 10.1007/s13131-015-0597-8

南海混合层近惯性能通量的时空变化

doi: 10.1007/s13131-015-0597-8
基金项目: The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XdA11020201; the National Basic Research Program of China under contract No. 2013CB956101; the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No. SQ201302; the National Science Foundation Council Grant of China under contract Nos 41430964, 41406023 and 41025019; the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams and General Research Fund of Hong Kong Research Grants Council under contract No. CUHK402912.

The spatiotemporal variation of the wind-induced near-inertial energy flux in the mixed layer of the South China Sea

  • 摘要: 本文基于QuikSCAT /NCEP混合风场资料和SOdA资料, 利用经实测流场验证的slab模式来计算南海混合层的近惯性能通量, 进而剖析了南海混合层近惯性能通量的时空分布特征. 研究结果表明: 南海混合层近惯性能通量存在着显著的时空变化, 在吕宋岛西侧整年、中南半岛东侧的夏、秋、冬季以及南海北部的5至9月存在着一个高值区, 前两个海区可能是受当地较大的风应力旋度影响, 而南海北部则可能是由于该海域夏季前后浅薄的混合层影响;且由于台风的影响, 南海混合层月平均的近惯性能通量在夏秋季比较大. 南海混合层多年平均的近惯性能通量约为1.25 mW/m2, 近惯性能量约为4.4GW. 研究还表明, 南海混合层近惯性能通量月平均值与Niño3.4指数的年际变化呈负相关关系.
  • Alford M H. 2001. Internal swell generation: the spatial distribution of energy flux from the wind to mixed layer near-inertial motions. Journal of Physical Oceanography, 31(8): 2359-2368
    Alford M H. 2003. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophysical Research Letters, 30(8): 1424
    Alford M H, Gregg M C. 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. Journal of Geophysical Research: Oceans (1978-2012), 106(C8): 16947-16968
    Cai Shuqun, Gan Zijun. 2000. The application of a three-dimensional baroclinic shelf sea model: the seasonal variation of the South China Sea upper mixed layer. Haiyang Xuebao (in Chinese), 22(3): 7-14
    Carton J A, Chepurin G, Cao Xianhe, et al. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950-95: Part I. Methodology. Journal of Physical Oceanography, 30(2): 294-309
    Chaigneau A, Pizarro O, Rojas W. 2008. Global climatology of near-inertial current characteristics from Lagrangian observations. Geophysical Research Letters, 35(13): L13603
    Chen Gengxin, Xue Huijie, Wang dongxiao, et al. 2013. Observed near-inertial kinetic energy in the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(10): 4965-4977
    d'Asaro E A. 1985. The energy flux from the wind to near-inertial motions in the surface mixed layer. Journal of Physical Oceanography, 15(8): 1043-1059
    Fang Guohong, Chen Haiying, Wei Zexun, et al. 2006. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. Journal of Geophysical Research: Oceans (1978-2012), 111(C11): C11S16
    Furuichi N, Hibiya T, Niwa Y. 2008. Model-predicted distribution of wind-induced internal wave energy in the world's oceans. Journal of Geophysical Research: Oceans (1978-2012), 113(C9): C09034
    Huang Ronghui, Zhang Renhe, Yan Bangliang. 2001. dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Science in China: Series d. Earth Sciences, 44(12): 1089-1098
    Jiang Jing, Lu Youyu, Perrie W. 2005. Estimating the energy flux from the wind to ocean inertial motions: the sensitivity to surface wind fields. Geophysical Research Letters, 32(15): L15610
    Kara A B, Rochford P A, Hurlburt H E. 2000. An optimal definition for ocean mixed layer depth. Journal of Geophysical Research: Oceans (1978-2012), 105(C7): 16803-16821
    Klein P, Lapeyre G, Large W G. 2004. Wind ringing of the ocean in presence of mesoscale eddies. Geophysical Research Letters, 31(15): L15306
    Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3): 324-336
    Liang Xinfeng, Zhang Xiaoqian, Tian Jiwei. 2005. Observation of internal tides and near-inertial motions in the upper 450 m layer of the northern South China Sea. Chinese Science Bulletin, 50(24): 2890-2895
    Liu Junliang, Cai Shuqun, Wang Shengan. 2011. Observations of strong near-bottom current after the passage of Typhoon Pabuk in the South China Sea. Journal of Marine Systems, 87(1): 102-108
    Liu Junliang, Cai Shuqun, Wang Shengan. 2014. diurnal wind and nonlinear interaction between inertial and tidal currents in the South China Sea during the passage of Typhoon Conson. Acta Oceanologica Sinica, 33(5): 1-7
    Liu Yonggang, Weisberg R H. 2012. Seasonal variability on the West Florida Shelf. Progress in Oceanography, 104: 80-98
    Milliff R F, Large W G, Morzel J, et al. 1999. Ocean general circulation model sensitivity to forcing from scatterometer winds. Journal of Geophysical Research: Oceans (1978-2012), 104(C5): 11337-11358
    Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. deep-Sea Research: Part I. Oceanographic Research Papers, 45(12): 1977-2010
    Pollard R T. 1970. On the generation by winds of inertial waves in the ocean. deep Sea Research and Oceanographic Abstracts, 17(4): 795-812
    Pollard R T, Millard R C Jr. 1970. Comparison between observed and simulated wind-generated inertial oscillations. deep Sea Research and Oceanographic Abstracts, 17(4): 813-821
    Rimac A, Von Storch J S, Eden C, et al. 2013. The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophysical Research Letters, 40(18): 4882-4886
    Simmons H L, Alford M H. 2012. Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25(2): 30-41
    Sun Lu, Zheng Quanan, Wang dongxiao, et al. 2011. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data. Journal of Oceanography, 67(6): 677-687
    Wang Yonggang, Fang Guohong, Wei Zexun, et al. 2006. Interannual variation of the South China Sea circulation and its relation to El Niño, as seen from a variable grid global ocean model. Journal of Geophysical Research: Oceans (1978-2012), 111(C11): C11S14
    Watanabe M, Hibiya T. 2002. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophysical Research Letters, 29(8): 64-1-64-3
    Wu Zhaohua, Huang N E. 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London: Series A. Mathematical, Physical and Engineering Sciences, 460(2046): 1597-1611
    Zhai Xiaoming, Greatbatch R J, Eden C, et al. 2009. On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. Journal of Physical Oceanography, 39(11): 3040-3045
  • 加载中
计量
  • 文章访问数:  1779
  • HTML全文浏览量:  122
  • PDF下载量:  1528
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-23
  • 修回日期:  2014-09-10

目录

    /

    返回文章
    返回