CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea

JIANG Tao ZHANG Yingzhao TANG Sulin ZHANG Daojun ZUO Qianmei LIN Weiren WANG Yahui SUN Hui WANG Bo

姜涛, 张迎朝, 汤苏林, 张道军, 左倩媚, 林为人, 王亚辉, 孙辉, 王博. 深水浊流形成过程的水动力学模拟:以南海北部琼东南盆地浊流形成过程为例[J]. 海洋学报英文版, 2014, 33(12): 127-137. doi: 10.1007/s13131-014-0582-7
引用本文: 姜涛, 张迎朝, 汤苏林, 张道军, 左倩媚, 林为人, 王亚辉, 孙辉, 王博. 深水浊流形成过程的水动力学模拟:以南海北部琼东南盆地浊流形成过程为例[J]. 海洋学报英文版, 2014, 33(12): 127-137. doi: 10.1007/s13131-014-0582-7
JIANG Tao, ZHANG Yingzhao, TANG Sulin, ZHANG Daojun, ZUO Qianmei, LIN Weiren, WANG Yahui, SUN Hui, WANG Bo. CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(12): 127-137. doi: 10.1007/s13131-014-0582-7
Citation: JIANG Tao, ZHANG Yingzhao, TANG Sulin, ZHANG Daojun, ZUO Qianmei, LIN Weiren, WANG Yahui, SUN Hui, WANG Bo. CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(12): 127-137. doi: 10.1007/s13131-014-0582-7

深水浊流形成过程的水动力学模拟:以南海北部琼东南盆地浊流形成过程为例

doi: 10.1007/s13131-014-0582-7
基金项目: The National Science and Technology Major Project of China under contract No. 2011ZX05025-002-02; the National Natural Science Foundation of China under contract Nos 41476032, 91028009 and 40806019.

CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea

  • 摘要: 浊流是湖泊和海洋中沉积物搬运的主要方式之一,尤其是它形成了世界上众多的作为深水油气田储层的深海碎屑沉积体.最近在南海西北部琼东南盆地的几口钻井已经表明,该盆地发育了大量浊流沉积,而且它们都可能成为优质储层.但是,目前关于这些浊流沉积的来源却存在有很多争论.因此,与评价这些浊积体储层质量同样重要的是要阐明其沉积来源.由于浊流沉积规模巨大,对其进行直接研究较为困难,近些年发展起来的数值模拟技术使得对浊流形成过程的数值模拟研究成为了可能.本研究在基于三维地震资料对浊积体的精细解释基础上,对琼东南盆地西部有钻井约束的地震剖面进行了回剥法恢复其古地貌,并据此建立了数值模拟模型.然后在定义了粒度、初始流速、沉积物浊度等初始边界条件后,通过数值模拟软件ANSYS FLUENT正演模拟了浊流的内部结构和其流体动力学过程,并将模拟结果所产生的浊积体几何形态与其地震反射特征进行对比,讨论其潜在的沉积来源和具体沉积过程.模拟结果表明,经钻井A钻遇的浊积体距离其物源区相对较远,以砂质沉积构成为主.综合考虑所模拟的地震测线位置和方位,对比模拟结果与钻井A的实钻岩性表明,钻井A所钻遇的浊积体来源于越南而不是海南岛.该结果也得到了基于钻井和地震剖面所得出的沉积相平面分布特征的证实.该浊积体物源的确定必将对评价琼东南盆地深水区广泛分布的海底扇的油气勘探潜力具有重要意义.
  • Baas J H, Kesteren W V, Postma G. 2004. Deposits of depletive, densityturbidity currents: a flume analogue of bed geometry, structure and texture. Sedimentology, 51(5): 1053-1089
    Blanchette F, Piche V, Meiburg E, et al. 2006. Evaluation of a simplified approach for simulating gravity currents over slopes of varying angles. Computers Fluid, 35(5): 492-500
    Bonnecaze R T, Hallworth M A, Huppert H E, et al. 1995. Axisymmetric particledriven gravity currents. Journal of Fluid Mechanics, 294: 93-121
    Bouma A H, Normark W R, Barnes N E. 1985. Submarine Fans and Related Turbidite Systems. New York: Springer-Verlag, 1-222 Britter R E, Linden P F. 1980. The motion of the front of a gravity current travelling down an incline. Journal of Fluid Mechanics, 99(3): 531-543
    Cantero M I, Balachandar S, Garcia M H. 2007. High-resolution simulations of cylindrical density currents. Journal of Fluid Mechanism, 590: 437-469
    Chen Percy P H, Chen Zhiyong, Zhang Qiming. 1993. Sequence stratigraphy and continental margin development of the northwestern shelf of the South China Sea. American Associate of Petroleum Geologists Bulletin, 77(5): 842-862
    Clift P D, Sun Zhen. 2006. The sedimentary and tectonic evolution of the Yinggehai-Song Hong Basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research, 111(B6): B6405, doi: 10.1029/2005JB004048
    Garcia M, Parker G. 1989. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition. Science, 245(4916): 393-396
    Gladstone C, Phillips J C, Sparks R S J. 1998. Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology, 45(5): 833-843
    Hallworth M A, Huppert H E. 1998. Abrupt transitions in high-concentration, particle-driven gravity currents. Physics Fluids, 10(5): 1083-1087
    Hao Shisheng, Huang Zhilong, Liu Guangdi, et al. 2000. Geophysical properties of cap rocks in Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 17(4): 547-555
    Hoang L V, Clift Peter, Schwab A M, et al. 2010. Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan Basins, South China Sea. In: Clift P D, Tada R, Zheng H, eds. Monsoon Evolution and Tectonic-climate Linkage in Asia. Geological Society, London, Special Publication, 342(1): 219-244
    Hosseini S A, Vahede Tafreshi H. 2012. Modelling particle-loaded single fiber efficiency and fiber drag using ANSYS-Fluent CFD code. Computers and Fluids, 66: 157-166
    Huang H, Imran J, Pirmez C. 2005. Numerical model of turbidity currents with a deforming bottom boundary. Journal of Hydraulic Engineering, 131(4): 283-293
    Jiang Tao, Xie Xinong, Tang Sulin, et al. 2007. Numerical simulation on the evolution of sediment waves caused by turbidity currents. Chinese Science Bulletin, 52(7): 2429-2434
    Jiang Tao, Xie Xinong, Wang Zhenfeng, et al. 2013. Seismic features and origin of sediment waves in the Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3-4): 281-294
    Kassem A, Imran J. 2001. Simulation of turbid underflows generated by the plunging of a river. Geology, 29(7): 655-658
    Kneller B, Buckee C. 2000. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology, 47(Suppl 1): 62-94
    Lovell J P B. 1971. Control of slope on deposition from small-scale turbidity currents: experimental results and possible geological significance. Sedimentology, 17(1-2): 81-88
    Middleton G V. 1966. Experiments on density and turbidity currents: I. Motion of the head. Canada Journal of Earth Science, 3: 627-637
    Middleton G V. 1993. Sediment deposition from turbidity currents. Ann Rev Earth Planet Sci, 21(1): 89-114
    Middleton G V, Hampton M A. 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In: Stanley D J, Swift D J P, eds. Marine Sediment Transport and Environmental Management. New York: Wiley, 197-218
    Necker F, Härtel C, Kleiser L, et al. 2002. High-resolution simulations of particle driven gravity currents. International Journal of Multiphase Flow, 28(2): 279-300
    Normark W R, Posamentier H, Mutti E. 1993. Turbidite systems: state of the art and future directions. Review of Geophysics, 31(2): 91-116
    Qiu Ning, Wang Zhenfeng, Xie Hui, et al. 2013. Geophysical investigations of crust-scale structural model of the Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3-4): 259-279
    Sanders J E. 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton G V, ed. Primary Sedimentary Structures and Their Hydrodynamic Interpretation-A Symposium. Tulsa: SEPM Special Publication, 12, 192-219
    Schmeeckle M W. 2014. Numerical simulation of turbulence and sediment transport of medium sand. Journal of Geophysical Research: Earth Surface, 119(6): 1240-1262
    Shin J O, Dalziel S B, Linden P F. 2004. Gravity currents produced by lock exchange. Journal of Fluid Mechanics, 521: 1-34
    Simonin C, Viollet P L. 1990. Predictions of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow. Numerical Methods for Multiphase Flows, 91: 65-82
    Simpson J E. 1997. Gravity Currents in the Environment and the Laboratory, 2th ed. New York: Cambridge University Press, 1-244
    Simpson J E, Britter R E. 1998. The dynamics of the head of a gravity current advancing over a horizontal surface. Journal of Fluid Mechanism, 94(3): 477-495
    Smith W H F, Sandwell D T. 1997. Global seaf loor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956-1962
    Song Guangzeng, Wang Hua, Gan Huajun, et al. 2014. Paleogene tectonic evolution controls on sequence stratigraphic patterns in the central part of deepwater area of Qiongdongnan basin, northern South China Sea. Journal of Earth Science, 25(2): 275- 288
    Su Ming, Xie Xinong, Xie Yuhong, et al. 2014. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 79: 552-563
    Wang Ce, Liang Xinquan, Xie Yuhong, et al. 2014. Provenance of Upper Miocene to Quaternary sediments in the Yinggehai-Song Hong Basin, South China Sea: evidence from detrital zircon U-Pb ages. Marine Geology, 355: 202-217
    Wang Yingmin, Xu Qiang, Li Dong, et al. 2011. Late Miocene Red River submarine fan, northwestern South China Sea. Chinese Science Bulletin, 56(14): 1488-1494
    Weimer P, Link M H. 1991. Global petroleum occurrences in submarine fans and turbidite systems. In: Weimer P, Link M H, eds. Frontiers in Sedimentary Geology, Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. New York: Springer Verlag, 9-67
    Wen Feng, Evans J. 1996. Effect of particle inertia on the instability of a particle-laden Flow. Computers Fluids, 25(7): 667-676 Xie Xinong, Müller D, Li Sitian, et al. 2006. Origin of anomalous subsidence along the northern south China Sea Margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745-765
    Xie Xinong, Müller D, Ren Jianye, et al. 2008. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Marine Geology, 247(3-4): 129-144
    Yuan Shengqiang, Lü Fuliang, Wu Shiguo, et al. 2009. Seismic stratigraphy of the Qiongdongnan deep sea channel system, northwest South China Sea. Chinese Journal of Oceanology and Limnology, 27(2): 250-259
  • 加载中
计量
  • 文章访问数:  1891
  • HTML全文浏览量:  49
  • PDF下载量:  1443
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-20
  • 修回日期:  2014-09-28

目录

    /

    返回文章
    返回