Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar

WANG Lihua ZHOU Yunxuan GE Jianzhong JOHANNESSEN Johnny A. SHEN Fang

WANGLihua, ZHOUYunxuan, GEJianzhong, JOHANNESSENJohnnyA., SHENFang. 基于合成孔径雷达的长江口海表流场反演[J]. 海洋学报英文版, 2014, 33(11): 141-149. doi: 10.1007/s13131-014-0563-x
引用本文: WANGLihua, ZHOUYunxuan, GEJianzhong, JOHANNESSENJohnnyA., SHENFang. 基于合成孔径雷达的长江口海表流场反演[J]. 海洋学报英文版, 2014, 33(11): 141-149. doi: 10.1007/s13131-014-0563-x
WANG Lihua, ZHOU Yunxuan, GE Jianzhong, JOHANNESSEN Johnny A., SHEN Fang. Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar[J]. Acta Oceanologica Sinica, 2014, 33(11): 141-149. doi: 10.1007/s13131-014-0563-x
Citation: WANG Lihua, ZHOU Yunxuan, GE Jianzhong, JOHANNESSEN Johnny A., SHEN Fang. Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar[J]. Acta Oceanologica Sinica, 2014, 33(11): 141-149. doi: 10.1007/s13131-014-0563-x

基于合成孔径雷达的长江口海表流场反演

doi: 10.1007/s13131-014-0563-x

Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar

  • 摘要: 依据多普勒质心频移理论, 综合分析和讨论了Envisat ASAR WSM影像用于海表流场反演的机理和方法。选取长江口及邻近海域为研究实例, 将ASAR WSM反演的海表流场与经过大量实测数据验证和率定的数值模拟FVCOM模型模拟结果进行对比, 显示吻合较好, 表明ASAR多普勒频率异常是一种有效的提取定量海表流场信息的技术方法。进一步定性定量地评价了雷达后向散射强度在方位向的剧烈梯度变化、低入射角、不精确的海表风矢量和雨的出现对ASAR反演海表流场产生的不确定性。长江口及邻近海域ASAR影像海表多普勒流场能够反映局部的海洋环境状况, 可为海洋数值模拟模型等提供精确的空间信息, 对于揭示中国东海海域多尺度的海洋动态至关重要。
  • Chang C Y, Curlander J C. 1992. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 941-949
    Chapron B, Collard F, Ardhuin F. 2005. Direct measurements of ocean surface velocity from space: interpretation and validation. Journal of Geophysical Research, 110: C07008
    Chapron B, Collard F, Kerbaol V. 2004. Satellite synthetic aperture radar sea surface Doppler measurements. Proceedings of the 2nd Workshop Coastal and Marine Applications Synthetic Aperture Radar (SAR). Svalbard, Norway: ESA Publications Division
    Collard F, Mouche A, Chapron B, et al. 2008. Routine high resolution observation of selected major surface currents from space. Proceedings of the Conference of SEASAR. Frascati, Italy: ESA Publications Division
    Dagestad K F, Hansen M W, Johannessen J A, et al. 2010. Inverting Consistent Surface Current Fields from SAR. Frascati, Roma: European Space Research Institute
    Envisat CFI Software. http://eop-cfi.esa.int/index.php/mission-cfi-software/envcfi-software
    Ge Jianzhong, Chen Changsheng, Qi Jianhua, et al. 2012. A dike-groyne algorithm in a terrain-following coordinate ocean model (FVCOM): development, validation and application. Ocean Modelling, 47(C): 26-40
    Ge Jianzhong, Ding Pingxing, Chen Changsheng, et al. 2013. An integrated East China Sea-Changjiang Estuary model system with aim at resolving multi-scale regional-shelf-estuarine dynamics. Ocean Dynamics, 63(8): 881-900
    Gerling T W. 1986. Structure of the surface wind field from the Seasat SAR. Journal of Geophysical Research, 91(C2): 2308-2320
    Graber H C, Thompson D R, Carande R E. 1996. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. Journal of Geophysical Research, 101(C11): 25813-25832
    Hansen M W, Collard F, Dagestad K F, et al. 2011. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements. IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3582-3592
    Hansen M W, Johannessen J A, Dagestad K F, et al. 2011. Monitoring the surface inflow of Atlantic water to the Norwegian Sea using Envisat ASAR. Journal of Geophysical Research, 116: C12008
    Horstmann J, Koch W, Lehner S. 2004. Ocean wind field retrieved from the advanced synthetic aperture radar aboard ENVISAT. Ocean Dynamics, 54(6): 570-576
    Johannessen J A, Chapron B, Collard F, et al. 2008. Direct ocean surface velocity measurements from space: improved quantitative interpretation of Envisat ASAR observations. Geophysical Research Letter, 35: L22608
    Kerbaol V, Collard F. 2005. SAR-derived coastal and marine applications: from research to operational products. IEEE Journal of Oceanic Engineering, 30(3): 472-486
    Li F K, Held D N, Curlander J C, et al. 1985. Doppler parameter estimation for spaceborne synthetic-aperture radars. IEEE Transactions on Geoscience and Remote Sensing, 23(1): 47-56
    Li Jiufa, Shi Weirong, Shen Huanting. 1994. Sediment properties and transportation in the turbidity maximum in Changjiang estuary. Geographical Research (in Chinese), 13(1): 51-59
    Lehner S, Schulz-Stellenfleth J, Schattler B, et al. 2000. Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2246-2257
    Madsen S N. 1989. Estimating the Doppler centroid of SAR data. IEEE Transaction on Aerospace and Electornic Systems, 25(2): 134-140
    Michael Y J. 1996. Optimal range and Doppler centroid estimation for a ScanSAR system. IEEE Transactions on Geoscience and Remote Sensing, 34(2): 479-488
    Mouche A, Dagestad K F, Collard F, et al. 2012. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2901-2909
    National Climatic Data Center. http://www.ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html
    Pandian P K, Emmanuel O, Ruscoe J P, et al. 2010. An overview of recent technologies on wave and current measurement in coastal and marine applications. Journal of Oceanography and Marine Science, 1(1): 1-10
    Peirson W L, Banner M L. 2003. Aqueous surface layer flows induced by microscale breaking wind waves. Journal of Fluid Mechanics, 479: 1-38
    Romeiser R, Suchand S, Runge H, et al. 2010. First analysis of TerraSAR-X along-track InSAR-derived current fields. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 820-829
    Romeiser R, Thompson D R. 2000. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents. IEEE Transactions on Geoscience and Remote Sensing, 38(1): 446-458
    Rouault M J, Mouche A, Collard F, et al. 2010. Mapping the Agulhas Current from space: an assessment of ASAR surface current velocities. Journal of Geophysical Research, 115: C10026
    Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. Journal of Geophysical Research, 102(C3): 5767-5780
    Thompson D R, Jensen J R. 1993. Synthetic-aperture radar interferometry applied to ship-generated internal waves in the 1989 Loch Linnhe experiment. Journal of Geophysical Research Oceans, 98(C6): 10259-10269
    Vachon P W, Dobson F W. 1996. Validation of wind vector retrieval from ERS-1 SAR images over the ocean. The Global Atmosphere and Ocean System, 5(2): 177-187
    Wu Hui, Zhu Jianrong. 2010. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to salt water intrusion in the Changjiang Estuary. Ocean Modelling, 33: 33-51
    Yang Z, Wang H, Saito Y, et al. 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resource Research, 42: W04407
  • 加载中
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  53
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-24
  • 修回日期:  2014-03-20

目录

    /

    返回文章
    返回