Simulation of Typhoon Muifa using a mesoscale coupled atmosphere-ocean model

SUN Minghua DUAN Yihong ZHU Jianrong WU Hui ZHANG Jin HUANG Wei

SUNMinghua, DUANYihong, ZHUJianrong, WUHui, ZHANGJin, HUANGWei. 中尺度海气耦合模式对台风“梅花”的预报试验[J]. 海洋学报英文版, 2014, 33(11): 123-133. doi: 10.1007/s13131-014-0561-z
引用本文: SUNMinghua, DUANYihong, ZHUJianrong, WUHui, ZHANGJin, HUANGWei. 中尺度海气耦合模式对台风“梅花”的预报试验[J]. 海洋学报英文版, 2014, 33(11): 123-133. doi: 10.1007/s13131-014-0561-z
SUN Minghua, DUAN Yihong, ZHU Jianrong, WU Hui, ZHANG Jin, HUANG Wei. Simulation of Typhoon Muifa using a mesoscale coupled atmosphere-ocean model[J]. Acta Oceanologica Sinica, 2014, 33(11): 123-133. doi: 10.1007/s13131-014-0561-z
Citation: SUN Minghua, DUAN Yihong, ZHU Jianrong, WU Hui, ZHANG Jin, HUANG Wei. Simulation of Typhoon Muifa using a mesoscale coupled atmosphere-ocean model[J]. Acta Oceanologica Sinica, 2014, 33(11): 123-133. doi: 10.1007/s13131-014-0561-z

中尺度海气耦合模式对台风“梅花”的预报试验

doi: 10.1007/s13131-014-0561-z

Simulation of Typhoon Muifa using a mesoscale coupled atmosphere-ocean model

  • 摘要: 本文基于GRAPES区域台风模式和ECOM_si河口海洋模式, 在耦合器OASIS3的框架下构建了一个西北太平洋区域海气耦合模式。海洋模式和大气模式交换海表面温度、海面风应力、热通量以及水汽通量。使用海气耦合模式和台风模式分别对1109号台风“梅花”的全过程进行了数值预报试验。为了考察使用更准确的SST信息对于台风梅花的路径和强度模拟的影响, 还开展了在控制试验初始场中提升SST分辨率的试验。结果表明, 在控制试验初始场中提升SST分辨率总体上对“梅花”台风强度预报略有改善, 而海气耦合模式对“梅花”台风的强度预报有明显改善, 48小时最大风速平均绝对误差减少了约32%, 72小时最大风速平均绝对误差减少了约20%。使用海气耦合模式改善了GRAPES区域台风模式在“梅花”强度预报上整体偏强的趋势。此外, 在“梅花”发展的不同阶段, 由于经过海洋的混合层深度不同, 海气耦合模式对其强度的影响程度不同, 相比于生成前期, 后期影响更为显著。耦合模式预报出台风经过洋面海表面温度最大降温约5-6℃, 其位置和幅度与卫星资料分析比较接近。对耦合模式和控制模式预报的海表面热通量、热带气旋潜热以及边界层湿静力能、大气中温度和降水等要素进行分析, 显示出该海气耦合模式的计算结果能够合理地反映出台风与海洋相互作用的主要机制。
  • Bender M A, Ginis I, Kurihara Y. 1993. Numerical simulations of the tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res, 98(D12): 23245-23263
    Bender M A, Ginis I. 2000. Real-case simulations of hurricane-ocean interaction using a high-resolution coupled models: Effects on hurricane intensity. Mon Wea Rev, 128(4): 917-946
    Bender M A, Ginis I, Tuleya R, et al. 2007. The Operational GFDL coupled hurricane-Ocean prediction system and a summary of its performance. Mon Wea Rev, 135(12): 3965-3989
    Black P G. 1983. Ocean temperature changes induced by tropical cyclones [dissertation]. Pennsylvania: The Pennsylvania State University, 278
    Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps N S, ed. Three-Dimensional Coastal Ocean Models. Washington, DC: American Geophysical Union, 1-16
    Blumberg A F. 1994. A primer for ECOM-si. Mahwah, NJ: Technical Report of Hydroqua, Inc
    Chan J C L, Duan Y H, Shay L K. 2001. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J Atmos Sci, 58(2): 154-172
    Chen C, Zhu J, Ralph E, et al. 2001. Prognostic modeling studies of the Keweenaw Current in Lake Superior, Part I: Formation and evolution. J Phys Oceanogr, 31(2): 379-395
    Chen S S, Zhao W, Mark A, et al. 2007. The CBLAST-Hurricane program and the Next-Generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull Amer Meteor Soc, 88(3): 311-317
    Chang S W, Madala R V. 1980. Numerical simulation of the influence of sea surface temperature on translating tropical cyclones. J Atmos Sci, 37(12): 2617-2630
    Emanuel K A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J Atmos Sci, 43(6): 585-604
    Emanuel K A.1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665-669
    Galperin B, Kantha L H, Hassid S, et al. 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci, 45(1): 55-62
    Ginis I, Shen W, Bender M A. 1999. Performance evaluation of the GFDL coupled hurricane ocean prediction system in the Atlantic basin. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology. Dallas, TX: Amer Meteor Soc, 607-610
    Ginis I. 2002. Tropical cyclone-ocean interactions. In: Perrie W, ed. Atmosphere-Ocean Interactions. Wessex Institute of Technology Press, 33: 83-114
    Kurihara Y, Bender M A, Ross R J. 1993. An initialization scheme of hurricane models by vortex specification. Mon Wea Rev, 121(7): 2030-2045
    Kurihara Y, Bender M A, Tuleya R E, et al. 1995. Improvements in the GFDL hurricane prediction system. Mon Wea Rev, 123(9): 2791-2801
    Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problem. Rev Geophys, 20(4): 851-875
    Moon I J, Hara T, Ginis I, et al. 2007. A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon Wea Rev, 135(8): 2869-2878
    Price J F. 1981. Upper ocean response to a hurricane. J Phys Oceanogr, 11(2): 153-175
    Shade L R, Emanuel K A. 1999. The ocean's effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J Atmos Sci, 56(4): 642-651
    Shay L K, Goni G J, Black P G. 2000. Effect of a warm oceanic feature on hurricane Opal. Mon Wea Rev, 128(5): 1366-1383
    Shen Qi, Zhu Jianrong, Duan Yihong, et al. 2010. Simulation of circulation and sea temperature in the Northwest Pacific. Journal of East China Normal University (Nature Science Edition) (in Chinese), (6): 26-35
    Shen Qi, Zhu Jianrong, Duan Yihong, et al. 2012. Numerical simulation of ocean circulation and temperature in the Northwest Pacific using a vertical S-coordinate model. Journal of Tropical Oceanography (in Chinese), 31(6): 20-28
    Valcke S. 2006. OASIS3 User Guide (prism_2-5). Technical Report TR/CMGC/06/73, CERFACS, Toulouse, France
    Valcke S. 2013. The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev, 6: 373-388, doi: 10.5194/gmd-6-373-2013
    Wada A. 2007. Numerical problems associated with tropical cyclone intensity prediction using a sophisticated coupled typhoon-ocean model. Pap Met Geophys, 58: 103-126
    Wang Y. 1995. On an inverse balance equation in sigma-coordinates for model initialization. Mon Wea Rev, 123(2): 482-488
    Wang Ziqian, Duan Anmin, Zheng Yongjun, et al. 2012. Simulative study of Typhoon Chanchu (2006) using the mesoscale coupled air-sea model GRAPES_OMLM. Acta Meteorologica Sinica, 70(2): 261-274
    Wu H, Zhu J R. 2010. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary. Ocean Modelling, 33(1-2): 31-51
    Xu Yinglong, Han Guirong, Ma Hongsu, et al. 2011. The analysis and discussion on operational forecast of super typhoon Muifa (1109). Meteorological Monthly (in Chinese), 37(10): 1196ese)o
    Xue Jishan, Chen Dehui. 2008. Scientific Design and Application of the Numerical Prediction System GRAPES (in Chinese). Beijing: Science Press
    Zhu Jianrong, Zhu Shouxian. 2003. Improvement of the ECOM with application to the Changjiang River Estuary, Hangzhou Bay and adjacent waters. Oceanologia et Liminologia Sinica (in Chinese), 34(4): 364-374
  • 加载中
计量
  • 文章访问数:  1700
  • HTML全文浏览量:  78
  • PDF下载量:  1579
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-25
  • 修回日期:  2013-10-23

目录

    /

    返回文章
    返回