Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass

Wang Dan Huang Bangqin Liu Xin Liu Guimei Wang Hui

WangDan, HuangBangqin, LiuXin, LiuGuimei, WangHui. 黄海冷水团海域浮游植物磷胁迫的季节变动[J]. 海洋学报英文版, 2014, 33(10): 124-135. doi: 10.1007/s13131-014-0547-x
引用本文: WangDan, HuangBangqin, LiuXin, LiuGuimei, WangHui. 黄海冷水团海域浮游植物磷胁迫的季节变动[J]. 海洋学报英文版, 2014, 33(10): 124-135. doi: 10.1007/s13131-014-0547-x
Wang Dan, Huang Bangqin, Liu Xin, Liu Guimei, Wang Hui. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass[J]. Acta Oceanologica Sinica, 2014, 33(10): 124-135. doi: 10.1007/s13131-014-0547-x
Citation: Wang Dan, Huang Bangqin, Liu Xin, Liu Guimei, Wang Hui. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass[J]. Acta Oceanologica Sinica, 2014, 33(10): 124-135. doi: 10.1007/s13131-014-0547-x

黄海冷水团海域浮游植物磷胁迫的季节变动

doi: 10.1007/s13131-014-0547-x
基金项目: The National Natural Science Foundation of China under contract Nos 41206106 and 41222038; the National Basic Research Program of China under contract No. 2006CB400604; the National High Technology Research and Development Program under contract No. 2007AA092003-01; Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System (YOOS).

Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass

  • 摘要: 黄海是位于大陆架上的一个半封闭的浅海,黄海冷水团是黄海一个重要的海洋现象。黄海冷水团的季节性生消对生源要素(如磷元素)以及浮游植物营养盐胁迫等生物过程产生重要的影响。在本研究中,2006年4月10月以及2007年3月和8月的四个航次中,作者调查了黄海冷水团对于浮游植物磷胁迫的季节性变化。应用群落水平和单细胞水平碱性磷酸酶相结合的分析方法,研究了该海区浮游植物群落变动与磷胁迫的关系,探讨了黄海浮游植物对磷的生态生理响应。黄海冷水团的生消对于黄海的无机磷酸盐浓度和群落水平的浮游植物碱性磷酸酶浓度都呈现显著的季节性影响。在A和B断面上,浮游植物碱性磷酸酶浓度在2007年8月最高,而在2007年3月最低。通过单细胞水平碱性磷酸酶活力检测来看,浮游植物优势种在3、4、10月均是硅藻为优势类群,而在夏季8月是甲藻为优势类群,且浮游植物的磷胁迫也存在明显的季节变动。浮游植物群落水平的磷胁迫呈现夏季最强,春季最弱,甲藻比硅藻更容易诱导表达碱性磷酸酶,这表明甲藻更容易受到磷胁迫。综合浮游植物优势类群和代表种的标记情况,发现黄海表层浮游植物单细胞水平的磷胁迫在8月最强,而在4月最弱。不同浮游植物诱导表达碱性磷酸酶的特性有差异,其磷胁迫水平也存在种间差异,像黄海的亚历山大藻(Alexandrium)和斯克里普藻(Scrippsiella)等甲藻可能常年处于磷营养盐胁迫状态。
  • Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25: 704-726
    Armstrong F A J, Stearns C R, Strickand J D H. 1967. The measurement of upwelling and subsequent biological process by means of the Technicon Autoanlyzer? and associated equipment. Deep Sea Research and Oceanographic Abstracts, 14(3): 381-389
    Beardall J, Berman T, Heraud P, et al. 2001. A comparison of methods for detection of phosphate limitation in microalgae. Aquat Sci, 63: 107-121
    Beardall J, Young E, Roberts S. 2001. Approaches for determining phytoplankton nutrient limitation. Aquat Sci, 63: 44-69
    Beardsley R C, Limeburner R, Yu H, et al. 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont Shelf Res, 4: 57-76
    Benitez-Nelson C R, Buesseler K O. 1999. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature, 398: 502-505
    Bruckmeier B, Eisenmann H, Beisker W. 2005. Exogenous alkaline phosphatase activity of algal cells determined by fluorometric and flow cytometic detection of soluble enzyme product (4-methyl-umbelliferone, fluorescein). J Phycol, 41: 993-999
    Cembella A D, Antia N J, Harrison P J. 1984. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 1. CRC Crit Rev Microbiol, 10(4): 317-391
    Chróst R J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst R J, ed. Microbial Enzymes in Aquatic Environments. New York: Springer, 29-59
    Conley D J. 2000. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410: 87-96
    Currie D J, Bentzen E, Kalff J. 1986. Does algal-bacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can J Fish Aquat Sci, 43: 311-318
    Dignum M, Hoogveld H, Matthijs H C P, et al. 2004. Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMS Microbiol Ecol, 48: 29-38
    Dyhrman S T. 2005. Ectoenzymes in Prorocentrum minimum. Harmful Algae, 4: 619-627
    Dyhrman S T, Palenik B. 1997. The identification and purification of a cell-surface alkaline phosphatase from the dinoflagellate Prorocentrum minimum (Dinophyceae). J Phycol, 33: 602-612
    Dyhrman S T, Palenik B. 1999. Phosphate stress in cultures and field populations of dinoflagellate Prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl Environ Microbiol, 65(7): 3205-3212
    Dyhrman S T, Palenik B. 2001. A single-cell immunoassay for phosphate stress in the dinoflagellate Prorocentrum minimum (Dinophyceae). J Phycol, 37: 400-410
    Dyhrman S T, Webb E A, Anderson D M, et al. 2002. Cell-specific detection of phosphorus stress in Trichodesmium from the western North Atlantic. Limnol Oceanogr, 47: 1832-1836
    González-Gil S, Keafer B A, Jovine R V M, et al. 1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser, 164: 21-35
    Harrison P J, Hu M, Yang Y, et al. 1990. Phosphate limitation in estuarine and coastal waters of China. J Exp Mar Biol Ecol, 140: 79-87
    Holmboe N, Jensen H S, Andersen F Ø. 1999. Nutrient addition bioassays as indicators of nutrient limitation of phytoplankton in a eutrophic estuary. Mar Ecol Prog Ser, 186: 95-104
    Hong Huasheng, Liu Xin, Chiang Kuoping, et al. 2011. The coupling of temporal and spatial variations of chlorophyll a concentration and the East Asian monsoons in the southern Taiwan strait. Cont Shelf Res, 31: S37-S47
    Hoppe H G. 2003. Phosphatase activity in the sea. Hydrobiologia, 493: 187-200
    Hu Minghui, Yang Yiping, Xu Chunling, et al. 1989. Phosphate limitation of phytoplankton growth in the Yangtze estuary. Acta Oceanol Sin (in Chinese), 11(4): 439-443
    Huang X Q, Morris J T. 2005. Distribution of phosphatase activity in marsh sediments along an estuarine salinity gradient. Mar Ecol Prog Ser, 292: 75-83
    Huang Bangqin, Ou Linjian, Wang Xiulin, et al. 2007. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat Microb Ecol, 49: 195-206
    Ichikawa H, Beardsley R C. 2002. The current system in the Yellow and East China Seas. J Oceanogr, 58(1): 72-92
    Karl D M. 2014. Microbially mediated transformations of phosphorus in the sea: New views of an old cycle. Annu Rev Marine Sci, 6: 279-337
    Karl D M, Björkman K, Dore J E, et al. 2001. Ecological nitrogen to phosphorus stoichiometry at Station ALOHA. Deep Sea Res Pt II, 48: 1529-1566
    Kruskopf M M, Plessis S D. 2004. Induction of both acid and alkaline phosphatase activity in two green algae (chlorophyceae) in low N and P concentrations. Hydrobiologia, 513: 59-70
    Li H, Veldhuis M J W, Post A F. 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar Ecol Prog Ser, 173: 107-115
    Liu Xin. 2012. Studies on the dynamics of phytoplankton community structure in the typical region of yellow sea (in Chinese) [dissertation]. Xiamen: Xiamen University Lomas M W, Swain A, Shelton R, et al. 2004. Taxonomic variability of phosphorus stress in Sargasso sea phytoplankton. Limnol Oceanogr, 49(6): 2303-2310
    Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta, 27: 31-36
    Nausch M. 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian bight (southern Baltic Sea). Aquat Microb Ecol, 16: 87-94
    Nausch M. 2004. Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic sea. Mar Ecol Prog Ser, 266: 15-25
    Nedoma J, García J C, Comerma M, et al. 2006. Extracellular phosphatases in a Mediterranean reservoir: seasonal, spatial and kinetic heterogeneity. Freshwater Biol, 51: 1264-1276
    Nygaard K, Tobiesen A. 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnol Oceanogr, 38: 273-279
    Oh Kyung-Hee, Lee Seok, Song Kyu-Min, et al. 2013. The temporal and spatial variability of the Yellow Sea Cold Water Mass in the southeastern Yellow Sea, 2009-2011. Acta Oceanologica Sinica, 32(9): 1-10
    Ou Linjian, Huang Bangqin, Lin Lizhen, et al. 2006. Phosphorus stress of phytoplankton in the Taiwan strait determined by bulk and single-cell alkaline phosphatase activity assays. Mar Ecol Prog Ser, 327: 95-106
    Ou Linjian, Wang Dan, Huang Bangqin, et al. 2008. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res, 30(9): 1007-1017
    Ou Linjian, Huang Bangqin, Hong Huasheng, et al. 2010. Comparative alkaline phosphatase characteristics of the algal bloom dinoflagellates prorocentrum donghaiense and alexandrium catenella, and the Diatom Skeletonema costatum. Journal of Phycology, 46(2): 260-265
    Pettersson K. 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Arch Hydrobiol, 89(1-2): 54-87
    Pai S C, Yang C C, Riley J P. 1991. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal Chim Acta, 229: 115-120
    Redfiled A C. 1958. The biological control of chemical factors in the environment. Am Sci, 46(3): 205-221
    Rengefors K, Pettersson K, Blenckner T, et al. 2001. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J Plankton Res, 23: 435-443
    Rengefors K, Ruttenberg K C, Haupert C L, et al. 2003. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnol Oceanogr, 48: 1167-1175
    Riegman R, Stolte W, Noordeloos A A M, et al. 2000. Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol, 36: 87-96
    Ren Huijun, Zhan Jiemin. 2005. A numerical study on the seasonal variability of the yellow sea cold water mass and the related dynamics. Journal of Hydrodynamics (in Chinese), 20(S1): 887-896
    Ruttenberg K C, Dyhrman S T. 2005. Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system. J Geophys Res, 110(C10): C10S13
    Sebastián M, Arítegui J, Montero M F, et al. 2004a. Alkaline phosphatase activity and its relationship to inorganic phosphorus in the transition zone of the north-western African upwelling system. Prog Oceanogr, 62: 131-150
    Sebastián M, Arítegui J, Montero M F, et al. 2004b. Kinetics of alkaline phosphatase activity, and effect of phosphate enrichment: a case study in the NW African upwelling region. Mar Ecol Prog Ser, 270: 1-13
    Smayda T J, Reynolds C S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J Sea Res, 49: 95-106
    Stihl A, Sommer U, Post A F. 2001. Alkaline phosphatase activities among populations of the colony-forming diazotrophic cyanobacterium trichodesmium spp. (Cyanobacteria) in the Red Sea. J Phycol, 37(2): 310-317
    Sundareshwar P V, Morris J T, Koepfler E K, et al. 2003. Phosphorus limitation of coastal ecosystem processes. Science, 299: 563-565
    Thingstad T. 2005. Simulating the response to phosphate additions in the oligotrophic eastern Mediterranean using an idealized four-member microbial food web model. Deep Sea Res Pt II, 52: 3074-3089
    Thingstad T F, Skjoldal E F, Bohne R A. 1993. Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar Ecol Prog Ser, 99: 239-259
    Tyrell T. 1999. The relative influence of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525-531
    Vidal M, Duarte C M, Agusti S, et al. 2003. Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency. Mar Ecol Prog Ser, 262: 43-53
    Wang Baodong. 2003. Nutrient distribution and their limitation on phytoplankton in the Yellow Sea and the East China Sea. Journal of Applied Ecology (in Chinese), 14(7): 1122-1126. Wong G, Gong G, Liu K, et al. 1998. ‘Excess Nitrate’ in the East China Sea. Estuar Coast Shelf Sci, 46: 411-418
    Yakahashi S, Yanagi T. 1995. A numerical study on the formation of circulations in the Yellow Sea during summer. La Mer, 33: 135-147
    Yin Kedong, Qian Peiyuan, Chen J, et al. 2000. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation. Mar Ecol Prog Ser, 194: 295-305
    Yu Fei, Zhang Zhixin, Diao Xinyuan, et al. 2006. Analysis of evolution of the Huanghai Sea cold water mass and its relationship with adjacent water masses. Acta Oceanol Sin (in Chinese), 28(5): 27-34
    Zhang Runyu, Wu Fengchang, Liu Congqiang, et al. 2008. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution, 152(2): 366-372
  • 加载中
计量
  • 文章访问数:  1744
  • HTML全文浏览量:  63
  • PDF下载量:  1480
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-19
  • 修回日期:  2014-05-16

目录

    /

    返回文章
    返回