Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: evolution processes and statistical analysis

DU Yunyan YI Jiawei WU Di HE Zhigang WANG Dongxiao LIANG Fuyuan

杜云艳, 易嘉伟, 吴笛, 贺志刚, 王东晓, 梁福源. 中国南海区1992-2012年的中尺度涡旋演化过程表达与统计分析[J]. 海洋学报英文版, 2014, 33(11): 36-47. doi: 10.1007/s13131-014-0530-6
引用本文: 杜云艳, 易嘉伟, 吴笛, 贺志刚, 王东晓, 梁福源. 中国南海区1992-2012年的中尺度涡旋演化过程表达与统计分析[J]. 海洋学报英文版, 2014, 33(11): 36-47. doi: 10.1007/s13131-014-0530-6
DU Yunyan, YI Jiawei, WU Di, HE Zhigang, WANG Dongxiao, LIANG Fuyuan. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: evolution processes and statistical analysis[J]. Acta Oceanologica Sinica, 2014, 33(11): 36-47. doi: 10.1007/s13131-014-0530-6
Citation: DU Yunyan, YI Jiawei, WU Di, HE Zhigang, WANG Dongxiao, LIANG Fuyuan. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: evolution processes and statistical analysis[J]. Acta Oceanologica Sinica, 2014, 33(11): 36-47. doi: 10.1007/s13131-014-0530-6

中国南海区1992-2012年的中尺度涡旋演化过程表达与统计分析

doi: 10.1007/s13131-014-0530-6

Mesoscale oceanic eddies in the South China Sea from 1992 to 2012: evolution processes and statistical analysis

  • 摘要: 海洋中尺度涡旋的自动识别与追踪近年来成为物理海洋领域研究的热点问题之一。针对中国南海区的海洋涡旋能量和几何学特征分析已经有学者采用不同方法开展过研究, 但这些研究较少关注南海区涡旋的内部演化过程的定量分析, 因此, 本文提出了一种追踪涡旋演化的混合方法, 该方法采用涡旋中心, 各个子涡的足迹边界和涡旋的组合边界来详细刻画涡旋内部结构特征, 并基于GIS时空演化模型完整地表达海洋中尺度涡旋过程中每个时刻的状态, 同时也记录了涡旋演化过程中所发生的演进、分裂、合并、消隐与重新等复杂的变化事件, 基于该数据模型, 构建了南海区1992-2012年的海洋中尺度涡旋时空过程数据库。通过对数据库中东沙冷涡(DCEs)和南海北部三个长周期暖涡(ACEs)的分析与结果验证, 明确了这些涡旋过程的演化, 此外, 还发现了2005年到2012年的类似于DCE和ACE的涡旋过程演化。对南海区涡旋的消隐, 重现、分裂与合并的空间分布分析可以看出涡旋的这些现象出现在吕宋岛西北, 吕宋海峡西南已经沿着越南的边缘海集聚的趋势。黑潮入侵和这些区域复杂海底地形是产生这些集聚的可能的原因。
  • Centurioni L R, Niiler P P, Lee D-K. 2004. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography,34(1): 113-121
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography,79(2-4): 106-119
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography,91(2): 167-216
    Chen G X, Hou Y J, Chu X Q. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res,116(C6): C06018
    Chen G, Hou Y, Chu X, et al. 2010a. Vertical structure and evolution of the Luzon Warm Eddy. Chinese Journal of Oceanology and Limnology,28(5): 955-961
    Chen G, Hou Y, Zhang Q, et al. 2010b. The eddy pair off eastern Vietnam: Interannual variability and impact on thermohaline structure. Continental Shelf Research,30(7): 715-723
    Chow C-H, Hu J-H, Centurioni L R, et al. 2008. Mesoscale Dongsha Cyclonic Eddy in the northern South China Sea by drifter and satellite observations. Journal of Geophysical Research,113(C4), doi: 10.1029/2007JC004542
    Doglioli A M, Blanke B, Speich S, et al. 2007. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. Journal of Geophysical Research,112(C5), doi: 10.1029/2006JC003952
    Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res,105(C8): 19477-19498
    He Z G, Wang D X, Hu J Y. 2002. Features of eddy kinetic energy and variations of upper circulation in the South China Sea. Acta Oceanologica Sinica,21(2): 305-314
    Henson S A, Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers,55(2): 163-176
    Hwang C, Chen S A. 2000. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. Journal of Geophysical Research: Oceans (1978-2012),105(C10): 23943-23965
    Isern-Fontanet J, García-Ladona E, Font J. 2003. Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 20(5): 772-778
    Isern-Fontanet J, García-Ladona E, Font J. 2006. Vortices of the Mediterranean sea: An altimetric perspective. Journal of Physical Oceanography,36(1): 87-103
    Jia Y, Liu Q. 2004. Eddy shedding from the Kuroshio bend at Luzon strait. Journal of Oceanography,60(6): 1063-1069
    Li L, Nowlin W D, Jilan S. 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Research Part I, 45(9): 1469-1482
    Lin P F, Wang F, Chen Y L, et al. 2007. Temporal and spatial variation characteristics on eddies in the South China Sea I. Statistical analyses. Acta Oceanologica Sinica,29(3): 14-22
    Metzger E J, Hurlburt H E. 2001. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography,31(7): 1712-1732
    Nan F, He Z, Zhou H, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research, 116(C5), doi: 10.1029/2010JC006790
    Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3): 445-454
    Penven P, Echevin V, Pasapera J, et al. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. Journal of Geophysical Research: Oceans (1978-2012), 110(C10), doi: 10.1029/2005JC002945
    Rodríguez-Marroyo R, Viúdez Á, Ruiz S. 2011. Vortex merger in oceanic tripoles. Journal of Physical Oceanography,41(6): 1239-1251
    Su J. 2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 24(16): 1745-1760
    Wang D, Xu H, Lin J, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography,64(6): 925-935
    Wang G H, Su J, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30 (21),2121, doi: 10.1029/2003GL018532
    Wang G H, Chen D K, Su J L. 2008. Winter eddy genesis in the Eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3): 726-732
    Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena,48(2-3): 273-294
    Wu C-R, Chiang T-L. 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography,54(14-15): 1575-1588
    Xiu P, Chai F, Shi L, et al. 2010. A census of eddy activities in the South China Sea during 1993-2007. J Geophys Res,115(C3): C03012
    Yi J, Du Y, He Z, et al. 2014. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Sci,10(1): 39-48
    Yi J, Du Y, Liang F, et al. 2014. A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena. International Journal of Geographical Information Science,28(5): 1010-1027
    Yuan D L, Han W Q, Hu D X. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J Geophys Res,111(C11): C11007
    Yuan D L, Han W Q, Hu D X. 2007. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophysical Research Letters,34(13), doi: 10.1029/2007GL029401
  • 加载中
计量
  • 文章访问数:  1961
  • HTML全文浏览量:  32
  • PDF下载量:  1399
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-20
  • 修回日期:  2014-05-28

目录

    /

    返回文章
    返回