The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production

CHEN Bingzhang HUANG Bangqin XIE Yuyuan GUO Cui SONG Shuqun LI Hongbo LIU Hongbin

陈炳章, 黄邦钦, 谢聿原, 郭萃, 宋书群, 李洪波, 刘红斌. 东海细菌丰度和生产力的季节变化及与浮游植物生物量和生产力的关系[J]. 海洋学报英文版, 2014, 33(9): 166-177. doi: 10.1007/s13131-014-0528-0
引用本文: 陈炳章, 黄邦钦, 谢聿原, 郭萃, 宋书群, 李洪波, 刘红斌. 东海细菌丰度和生产力的季节变化及与浮游植物生物量和生产力的关系[J]. 海洋学报英文版, 2014, 33(9): 166-177. doi: 10.1007/s13131-014-0528-0
CHEN Bingzhang, HUANG Bangqin, XIE Yuyuan, GUO Cui, SONG Shuqun, LI Hongbo, LIU Hongbin. The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production[J]. Acta Oceanologica Sinica, 2014, 33(9): 166-177. doi: 10.1007/s13131-014-0528-0
Citation: CHEN Bingzhang, HUANG Bangqin, XIE Yuyuan, GUO Cui, SONG Shuqun, LI Hongbo, LIU Hongbin. The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production[J]. Acta Oceanologica Sinica, 2014, 33(9): 166-177. doi: 10.1007/s13131-014-0528-0

东海细菌丰度和生产力的季节变化及与浮游植物生物量和生产力的关系

doi: 10.1007/s13131-014-0528-0
基金项目: The National Basic Research Program (973 Program) of China through Grant under contract No. 2009CB421203; the Fundamental Research Funds for the Central Universities of Xiamen University of China under contract Nos 2011121007 and 2012121058; the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences of China under contract No. LTO1103; the Hong Kong Research Grant Council General Research Fund under contract Nos 661809, 661610 and 661911; the National Natural Science Foundation of China under contract Nos 40906082, 41176112 and 41330961; the Public Science and Technology Research Funds Projects of Ocean under contract No. 201005015-5.

The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production

  • 摘要: 东海是一个具有较宽大陆架、生产力较高的边缘海,在吸收大气二氧化碳和将陆源有机物传输到开阔大洋的生物地球化学循环中起重要作用。为研究异养细菌在东海生物地球化学循环中的作用,我们在4个航次中测定了细菌生物量和生产力。细菌生物量和生产力的水平分布具有显著的季节特征。受长江径流影响,在2009年8月航次细菌生物量和生产力在近岸陆架(水深不超过50m)水体中较高,并向离岸逐步降低。在2009年12月-2010年1月与2010年11-12月的航次中,细菌生物量和生产力在中等水深的水体中较高。从近岸向离岸逐步降低的趋势在2011年5月的航次中也观察到。在此航次中,细菌生物量在陆架坡折处(水深深于50米但浅于200米)显著高于其他航次。广义相加模型结果显示细菌生物量在8-20度范围内随温度升高而升高,在0.02-3.00 mg/m3范围内随叶绿素浓度上升而上升,而当叶绿素浓度再上升时则下降。细菌生物量在盐度28-35范围内随盐度上升而下降。细菌生长率(取对数后)与温度的关系为线性。所估算的细菌生长率的温度系数(Q10)与浮游植物生长率的相接近。细菌生长率也随叶绿素浓度升高而升高。细菌生产力与浮游植物初级生产的比例范围为0.01-0.4,并在2010年11-12月航次中显著高于2011年5-6月。由细菌生产力和生长效率计算所得,在2009年8月、2010年11-12月、2011年5-6月三个航次中59%、72%和23%的浮游植物初级生产力分别被细菌呼吸所消耗。
  • Allen A P, Gillooly J F, Brown J H. 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology, 19: 202-213
    Bai Xiaoge, Wang Min, Ma Jingjing, et al. 2007. Virioplankton abundance in winter and spring in Changjiang River estuary by fluorescence microscope counting. Oceanologia et Limnologia Sinica, 38: 367-372
    Bauer J E, Druffel E R M. 1998. Ocean margins as a significant source of organic matter to the deep open ocean. Nature, 392: 482-485
    Billen G, Servais P, Becquevort S. 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia, 207: 37-42
    Bjornsen P K, Kuparinen J. 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern-Ocean. Marine Ecology Progress Series, 71: 185-194
    Cai Weijun, Dai Minhan, Wang Yucheng. 2006. Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys Researh Letters, 33: L12603, doi: 10.1029/2006GL026219
    Chang J, Shiah F K, Gong G C, et al. 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep-Sea Research Part II, 50: 1237-1247
    Chen C T A. 1996. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta, 19: 523-527
    Chen Jianfang, Li Yan, Yin Kedong, et al. 2004. Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation. Continental Shelf Research, 24: 1877-1894
    Del Giorgio P A, Cole J J, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29: 503-541
    Del Giorgio P A, Cole J J, Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385: 148-151
    Ducklow H W. 1999. The bacterial component of the oceanic euphotic zone. FEMS Microbiology Ecology, 30: 1-10
    Eppley R W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70: 1063-1085
    Furuya K, Hayashi M, Yabushita Y. 1998. HPLC determination of phytoplankton pigments using N, N-dimethylfolmamide. Journal of Oceanography, 54: 199-203
    Gasol J M, Pedros-Alio C, Vaque D. 2002. Regulation of bacterial assemblages in oligotrophic plankton systems: results from experimental and empirical approaches. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 81: 435-452
    Gong G C, Wen Y H, Wang B W, et al. 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Research Part II, 50: 1219-1236
    Hoppe H G, Gocke K, Koppe R, et al. 2002. Bacterial growth and primary production along a north-south transect of the Atlantic Ocean. Nature, 416: 168-171
    Jassby A D, Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21: 540-547
    Jiao Nianzhi, Zhao Yanlin, Luo Tingwei, et al. 2006. Natural and anthropogenic forcing on the dynamics of virioplankton in the Yangtze River estuary. Journal of Marine Biologogical Association of the United Kingdom, 86: 543-550
    Kaunzinger C M K, Morin P J. 1998. Productivity controls food chain properties in microbial communities. Nature, 395: 495-497
    Kirchman D L. 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In: Kemp P, Sherr, B F, Sherr E B, et al. eds. Handbook of Methods in Aquatic Microbial Ecology. Boca Raton, Florida,.Lewis Publishers, 509-512
    Kirchman D L, Hill V, Cottrell M T, et al. 2009. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep-Sea Research Part II, 56: 1237-1248
    Kirchman D L, Malmstrom R R, Cottrell M T. 2005. Control of bacterial growth by temperature and organic matter in the western Arctic. Deep-Sea Research Part II, 52: 3386-3395
    Laws E A, Falkowski P G, Smith Jr W O, et al. 2000. Temperature affects export production in the open ocean. Global Biogeochemical Cycles, 14: 1231-1246
    Lee S, Fuhrman J A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53: 1298-1303
    Li W KW, Head E J H, Harrison W G. 2004. Macroecological limits of heterotrophic bacterial abundance in the ocean. Deep-Sea Research: Part I, 51: 1529-1540
    Liu Jingjing, Zeng Jiangning, Du Ping, et al. 2011. Abundance distribution of virioplankton in Yangtze River estuary and its adjacent East China Sea in summer and winter. Chinese Journal of Applied Ecology, 22: 793-799
    Lopez-Urrutia A, Moran X A G. 2007. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology, 88: 817-822
    Lopez-Urrutia A, San Martin E, Harris R P, et al. 2006. Scaling the metabolic balance of the oceans. Proceedings of National Academy of Science, United States of America, 103: 8739-8744
    Marie D, Partensky F, Jacquet S, et al. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied Environmental Microbiology, 63: 186-193
    Oksanen L, Fretwell S D, Arruda J, et al. 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118: 240-261
    Pomeroy L R, Deibel D. 1986. Temperature regulation of bacterial activity during the Spring bloom in Newfoundland coastal waters. Science, 233: 359-361
    Pomeroy L R, Wiebe W J. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology, 23: 187-204
    R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/Ratkowsky D A, Olley J, Ross T. 2005. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. Journal of Theoretical Biology, 233: 351-362
    Rivkin R B, Anderson M R, Lajzerowicz C. 1996. Microbial processes in cold oceans: 1. Relationship between temperature and bacterial growth rate. Aquatic Microbial Ecology, 10: 243-254
    Rivkin R B, Legendre L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science, 291: 2398-2400 Sarmiento J L, Slater R, Barber R T, et al. 2004. Response of ocean ecosystems to climate warming. Global Biogeochem Cycles, 18: GB3003-3015
    Schlitzer R. 2010. Ocean Data View. http://odv.awi.de. Shiah F K, Chen T Y, Gong G C, et al. 2001. Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquatic Microbial Ecology, 23: 273-282
    Shiah F K, Ducklow H W. 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth-rate in Chesapeake Bay. Limnology and Oceanography, 39: 1243-1258 Shiah F K, Gong G C, Chen C C. 2003. Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Research Part II, 50: 1295-1309
    Shiah F K, Gong G C, Chen T Y, et al. 2000. Temperature dependence of bacterial specific growth rates on the continental shelf of the East China Sea and its potential application in estimating bacterial production. Aquatic Microbial Ecology, 22: 155-162
    Shiah F K, Liu K K, Gong G C. 1999. Temperature versus substrate limitation of heterotrophic bacterioplankton production across trophic and temperature gradients in the East China Sea. Aquatic Microbial Ecology, 17: 247-254
    Shiah F K, Liu K K, Kao S J, et al. 2000. The coupling of bacterial production and hydrography in the southern East China Sea: spatial patterns in spring and fall. Continental Shelf Research, 20: 459-477
    Tsunogai S, Watanabe S, Sato T. 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2?. Tellus: B, 51: 701-712
    Vaulot D, Courties C, Partensky F. 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry, 10: 629-635
    Wong G T F, Chao S Y, Li Y H, et al. 2000. The Kuroshio edge exchange processes (KEEP) study—An introduction to hypotheses and highlights. Continental Shelf Research, 20: 335-347
    Wood S N. 2006. Generalized Additive Models: An Introduction with R. Boca Raton: CRC Press
  • 加载中
计量
  • 文章访问数:  2107
  • HTML全文浏览量:  42
  • PDF下载量:  1627
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-07
  • 修回日期:  2013-05-20

目录

    /

    返回文章
    返回