Weak coupling between heterotrophic nanoflagellates and bacteria in the Yellow Sea Cold Water Mass area

LIN Shiquan HUANG Lingfeng LU Jiachang

林施泉, 黄凌风, 陆家昌. 黄海冷水团海域微型异养鞭毛虫与细菌的弱耦合关系[J]. 海洋学报英文版, 2014, 33(9): 125-132. doi: 10.1007/s13131-014-0523-5
引用本文: 林施泉, 黄凌风, 陆家昌. 黄海冷水团海域微型异养鞭毛虫与细菌的弱耦合关系[J]. 海洋学报英文版, 2014, 33(9): 125-132. doi: 10.1007/s13131-014-0523-5
LIN Shiquan, HUANG Lingfeng, LU Jiachang. Weak coupling between heterotrophic nanoflagellates and bacteria in the Yellow Sea Cold Water Mass area[J]. Acta Oceanologica Sinica, 2014, 33(9): 125-132. doi: 10.1007/s13131-014-0523-5
Citation: LIN Shiquan, HUANG Lingfeng, LU Jiachang. Weak coupling between heterotrophic nanoflagellates and bacteria in the Yellow Sea Cold Water Mass area[J]. Acta Oceanologica Sinica, 2014, 33(9): 125-132. doi: 10.1007/s13131-014-0523-5

黄海冷水团海域微型异养鞭毛虫与细菌的弱耦合关系

doi: 10.1007/s13131-014-0523-5
基金项目: The National Basic Research Program (973 Program) of China under contract Nos 2006CB400604 and 2011CB409804; the National Natural Science Foundation of China under contract No. 40876078.

Weak coupling between heterotrophic nanoflagellates and bacteria in the Yellow Sea Cold Water Mass area

  • 摘要: 2006年10月在黄海冷水团海域开展了微型异养鞭毛虫对细菌的摄食压力的调查研究。结果显示,调查海区微型异养鞭毛虫丰度为303~1388 mL-1,平均884 mL-1,其生物量相当于细菌生物量的10.6%~115.6%。微型异养鞭毛虫丰度的极大值出现在30 m以浅水层,其垂直分布规律为表层大于中层大于底层。水文资料表明,黄海冷水团分布在研究区域的东北部,通常在海表以下40m水深至海底。在黄海冷水团内部和冷水团以上的水层中,微型异养鞭毛虫和细菌的丰度的相关关系都不强。单因素方差分析结果也显示,微型异养鞭毛虫和细菌的丰度在黄海冷水团内部与其上水体也有显著不同。微型异养鞭毛虫对细菌的摄食率平均为8.02±3.43 h-1。微型异养鞭毛虫对细菌的摄食压力相当于细菌现存量的22.75±6.91%,或者相当于细菌生产力的6.55±4.24%。以上结果表明,在黄海冷水团海域微型异养鞭毛虫的摄食可能不是导致细菌损失的主要因素。
  • Adamczewski T, Chróst R J, Kalinowska K, et al. 2010. Relationships between bacteria and heterotrophic nanoflagellates in lake water examined by different techniques controlling grazing pressure. Aquatic Microbial Ecology, 60(2): 203-213
    Andersen P, Sørensen H M. 1986. Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters. Marine Ecology Progress Series, 33: 99-109
    Azam F, Fenchel T, Field J G, et al. 1983. The ecological role of watercolumn microbes in the sea. Marine Ecology Progress Series, 10(3): 257-263
    Børsheim K Y, Bratbak G. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series, 36(17): 171-175
    Bettarel Y, Dolan J R, Hornak K, et al. 2002. Strong, weak, and missing links in a microbial community of the NW Mediterranean Sea. FEMS Microbiology Ecology, 42(3): 451-462
    Bjørnsen P K, Riemann B, Horsted S J, et al. 1988. Trophic interactions between heterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures. Limnology and Oceanography, 33(3): 409-420
    Breitbart M, Middelboe M, Rohwer F. 2008. Marine viruses: community dynamics, diversity and impact on microbial processes. In: Kirchman D L, ed. Microbial Ecology of the Oceans. Hoboken: John Wiley & Sons, 443-479
    Caron D A, Peele E R, Lim E L, et al. 1999. Picoplankton and nanoplankton and their trophic coupling in surface waters of the Sargasso Sea south of Bermuda. Limnology and Oceanography, 44(2): 259-272
    Choi D H, Hwang C Y, Cho B C. 2003. Comparison of virus-and bacterivory-induced bacterial mortality in the eutrophic Masan Bay, Korea. Aquatic Microbial Ecology, 30(2): 117-125
    Gasol J M, Vaqué D. 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems? Limnology and Oceanography, 38(3): 657-665
    Hamels I, Muylaert K, Casteleyn G, et al. 2001. Uncoupling of bacterial production and flagellate grazing in aquatic sediments: a case study from an intertidal flat. Aquatic Microbial Ecology, 25(1): 31-42
    Hu Dunxin, Wang Qingye. 2004. Interannual variability of the southern Yellow Sea Cold Water Mass. Chinese Journal of Oceanology and Limnology, 22(3): 231-236
    Huang Lingfeng, Pan Ke, Guo Feng. 2006. Quantitative relationship between flagellate abundance and suspended particle density in Huanghai Sea and East China Sea in summer. Acta Oceanologica Sinica, 25(2): 109-118
    Huo Yuanzi, Wang Shiwei, Sun Song, et al. 2008. Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal of Plankton Research, 30(6): 123-134
    Jeong H J, Song J E, Kang N S, et al. 2007. Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp. Marine Ecology Progress Series, 333: 151-160
    Jin Xianshi, Tang Qisheng. 1996. Changes in fish species diversity and dominant species composition in the Yellow Sea. Fisheries Research, 26(3-4): 337-352
    Jürgens K, Massana R. 2008. Protistan grazing on marine bacterioplankton. In: Kirchman D L, ed. Microbial Ecology of the Oceans. Hoboken: John Wiley & Sons, 383-441
    Jürgens K, Wickham S A, Rothhaupt K O, et al. 1996. Feeding rates of macro-and microzooplankton on heterotrophic nanoflagellates. Limnology and Oceanography, 41(8): 1833-1839
    Kimmance S A, Atkinson D, Montagnes D J S. 2006. Do temperaturefood interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina. Aquatic Microbial Ecology, 42(1): 63-73
    Lee S, Fuhrman J A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53(6): 1298-1303
    Li Hongbo, Xiao Tian, Ding Tao, et al. 2006. Effect of the Yellow Sea Cold Water Mass (YSCWM) on distribution of bacterioplankton. Acta Ecologica Sinica, 26(4): 1012-1019
    Montagnes D J S, Barbosa A B, Boenigk J, et al. 2008. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquatic Microbial Ecology, 53(1): 83-98
    Montagnes D J S, Kimmance S A, Atkinson D. 2003. Using Q10: can growth rates increase linearly with temperature? Aquatic Microbial Ecology, 32(3): 307-313
    Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 101-114
    Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology, 3(7): 537-546
    Porter K G, Feig Y S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5): 943-948
    Rose J M, Vora N M, Countway P D, et al. 2009. Effects of temperature on growth rate and gross growth efficiency of an Antarctic bacterivorous protist. The ISME Journal, 3(2): 252-260
    Sanders R W, Caron D A, Berninger U G. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Marine Ecology Progress Series, 86: 1-14
    Sanders R W, Leeper D, King C H, et al. 1994. Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288(3): 167-181
    Schlitzer R. 2011. Ocean Data View. http://odv.awi.de Sherr B F, Sherr E B, Newell S Y. 1984. Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. Journal of Plankton Research, 6(1): 195-202
    Sherr E B. 1988. Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature, 335(6188): 348-351
    Sherr E B, Sherr B F. 1993. Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp P F, Sherr E B, Sherr B F, et al., eds. Handbook of Methods in Aquatic Microbial Ecology. Boca Raton: Lewis Publishers, 695-701
    Sherr E B, Sherr B F. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microbial Ecology, 28(2): 223-235
    Sleigh M A. 2000. Trophic strategie. In: Leadbeater B S C, Green J C, eds. The Flagellates: Unity, Diversity and Evolution. London: Taylor & Francis, 147-165
    Šolić M, Krstulović N, Bojanić N, et al. 1998. Seasonal switching between relative importance of bottom-up and top-down control of bacterial and heterotrophic nanoflagellate abundance. Journal of the Marine Biological Association of the United Kingdom, 78(3): 755-766
    Tadonléké R D, Pinel-Alloul B, Bourbonnais N, et al. 2004. Factors affecting the bacteria-heterotrophic nanoflagellate relationship in oligo-mesotrophic lakes. Journal of Plankton Research, 26(6): 681-695
    Wang Rong, Zuo Tao, Wang Ke. 2003. The Yellow Sea Cold Bottom Water-an oversummering site for Calanus sinicus (Copepoda, Crustacea). Journal of Plankton Research, 25(2): 169-183
    Wieltschnig C, Kirschner A K T, Steitz A, et al. 2001. Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microbial Ecology, 42(2): 159-167
    Wieltschnig C, Wihlidal P, Ulbricht T, et al. 1999. Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environment. Aquatic Microbial Ecology, 17(1): 77-89
    Zöllner E, Hoppe H-G, Sommer U, et al. 2009. Effect of zooplanktonmediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography, 54(1): 262-275
    Zhao Sanjun, Xiao Tian, Lu Ruihua, et al. 2010. Spatial variability in biomass and production of heterotrophic bacteria in the East China Sea and the Yellow Sea. Deep Sea Research Part II, 57(11/12): 1071-1078
    Zhao Yuan, Zhao Li, Xiao Tian, et al. 2011. Spatial and temporal variation of picoplankton distribution in the Yellow Sea, China. Chinese Journal of Oceanology and Limnology, 29(1): 150-161
  • 加载中
计量
  • 文章访问数:  1527
  • HTML全文浏览量:  53
  • PDF下载量:  1377
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-07
  • 修回日期:  2013-09-13

目录

    /

    返回文章
    返回