Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model: an annual validation

LIU Xiying

LIUXiying. 一个区域海洋——海冰——大气耦合模式中的北极气候偏差:年结果检验[J]. 海洋学报英文版, 2014, 33(9): 56-67. doi: 10.1007/s13131-014-0518-2
引用本文: LIUXiying. 一个区域海洋——海冰——大气耦合模式中的北极气候偏差:年结果检验[J]. 海洋学报英文版, 2014, 33(9): 56-67. doi: 10.1007/s13131-014-0518-2
LIU Xiying. Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model: an annual validation[J]. Acta Oceanologica Sinica, 2014, 33(9): 56-67. doi: 10.1007/s13131-014-0518-2
Citation: LIU Xiying. Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model: an annual validation[J]. Acta Oceanologica Sinica, 2014, 33(9): 56-67. doi: 10.1007/s13131-014-0518-2

一个区域海洋——海冰——大气耦合模式中的北极气候偏差:年结果检验

doi: 10.1007/s13131-014-0518-2
基金项目: The National Natural Science Foundation of China under contract No. 41276190.

Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model: an annual validation

  • 摘要: 本文将区域气候模式WRF/PCE (polar climate extension version of weather research and forecasting model (WRF))、区域海洋 ROMS (regional ocean modeling system)及海冰模式CICE (community ice code)耦合起来,发展出区域海洋—海冰—大气耦合模式WRF/PCE-ROMS-CICE,并利用ERA-interim 再分析数据集1989年资料对耦合模式模拟结果进行了检验。为更好地理解耦合模式误差产生原因,对WRF/PCE-ROMS-CICE、WRF/PCE及 ROMS-CICE模拟结果进行了对比分析。WRF/PCE-ROMS-CICE 模拟结果中北冰洋表面气温(SAT)偏低,导致海冰密集度 (SIC) 及海表面温度(SST) 出现偏差。 SAT冷偏差也出现在WRF/PCE模拟结果中,但冬季误差减小。与WRF/PCE结果相比,由于受SIC 、 SST分布差异及海—冰—气相互作用机制影响,WRF/PCE-ROMS-CICE 模拟的SAT具有新特征。这些影响也导致更高层次大气特征出现明显差异,这些不同可视为对SST及SIC 差异的响应。1月,700和500 hPa 等压面上大气响应分布特征相近,但显示出响应强度随高度增加而减小特征。7月,大气响应可伸展至 200 hPa。ROMS-CICE模拟结果中,冬季格陵兰海、巴伦支海、戴维斯海峡及楚科奇海海冰偏多,夏季波弗特海、楚科奇海、东西伯利压海及拉普捷夫海海冰偏多。这些误差与SST 误差相联系。ROMS-CICE模拟结果中的SST及SIC误差特征也出现在WRF/PCE-ROMS-CICE结果中。这表明,耦合模式WRF/PCE-ROMS-CICE的性能在很大程度上由其模式分量WRF/PCE及ROMS-CICE的性能决定。
  • Asplin M G, Lukovich J V, Barber D G. 2009. Atmospheric forcing of the Beaufort Sea ice gyre: surface pressure climatology and sea ice motion. J Geophys Res, 114: C00A06 DOI: 10.1029/2008JC005127
    Briegleb B P, Bromwich D H. 1998. Polar climate simulation of the NCAR CCM3. J Climate, 11: 1270-1286
    Bromwich D H, Hines K M, Bai L S. 2009. Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J Geophys Res, 114: D08122 DOI: 10.1029/2008JD010300
    Budgell W P. 2005. Numerical simulation of ice-ocean variability in the Barents Sea region: towards dynamical downscaling. Ocean Dynamics, 55: 370-387 DOI: 10.1007/s10236-005-0008-3
    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Monthly Weather Review, 136: 2999-3017
    Cassano J J, Box J E, Bromwich D H, et al. 2001. Evaluation of polar MM5 simulations of Greenland's atmospheric circulation. J Geophys Res, 106(D24): 33867-33889
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc,137: 553-597
    Di Lorenzo E. 2003. Seasonal dynamics of the surface circulation in the southern California Current System. Deep-Sea Res: Part II, 50: 2371-2388
    Dinniman M S, Klinck J M, Smith W O Jr. 2003. Cross shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep-Sea Res: Part II, 50: 3103-3120
    Dorn W, Dethloff K, Rinke A. 2012. Limitations of a coupled regional climate model in the reproduction of the observed Arctic sea-ice retreat. The Cryosphere, 6: 985-998
    Doscher R, Koenigk T. 2013. Arctic rapid sea ice loss events in regional coupled climate scenario experiments. Ocean Sci, 9: 217-248 DOI: 10.5194/os-9-217-2013
    Doscher R,Wyser K, Meier H E M, et al. 2010. Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model. Climate Dyn, 34:1157-1176 DOI 10.1007/s00382-009-0567-y
    Holton J R. 2004. An Introduction to Dynamic Meteorology. 4th ed. New York: Academic Press, 70-73
    Hunke E C, Lipscomb W H. 2010. CICE: the Los Alamos sea ice model, documentation and software User's Manual Version 4.1. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Tech Rep LA-CC-06-012. Los Alamos: Los Alamos National Laboratory
    Kauker F, Gerdes R, Karcher M, et al. 2003. Variability of Arctic and north Atlantic sea ice: a combined analysis of model results and observations from 1978 to 2001. J Geophys Res, 108: 3182 DOI:10.1029/2002JC001573 Liu X Y, Liu H L, Li W, et al. 2008. Numerical simulation of atmosphereocean-sea ice interaction during interannual cycle in high northern latitudes. Acta Meteorologica Sinica, 22: 119-128
    Liu X Y, Zhang X H, Yu R C, et al. 2005. Experiments of sea ice simulation. Journal of Hydrodynamics, 17:686-692
    Liu X Y, Zhang X H, Yu R C, et al. 2007. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas. Chinese Journal of Oceanology and Limnology, 25:132-138
    Liu X Y. 2010. Implementation of a sea ice-ocean coupled model in form of coupler component. Computer Engineering and Applications (in Chinese), 46: 24-27
    Liu X Y. 2011. Numerical simulations of sea ice with different advection schemes. Journal of Hydrodynamics, 23:372-378
    Liu X Y, Zhao J H, Xia H S, et al. 2013. Temperature biases in modeled polar climate and adoption of physical parameterization schemes. Advances in Polar Sciences, 23: 30-40
    Marchesiello P, McWilliams J C, Shchepetkin A. 2003. Equilibrium structure and dynamics of the California Current System. J Phys Oceanogr, 33: 753-783
    Peliz A, Dubert J, Haidvogel D B, et al. 2003. Generation and unstable evolution of a density-driven Eastern Poleward Current: the Iberian Poleward Current. J Geophys Res, 108: 3268 DOI:10.1029/2002JC001443 Proshutinsky A, Aksenov Y, Gerdes R, et al. 2011. Recent advances in Arctic Ocean studies employing models from the Arctic Ocean Model Intercomparison Project. Oceanography, 24:102-113
    Shchepetkin A F, McWilliams J C. 2005. The regional ocean modeling system: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Modelling, 9: 347-404
    Simmons A, Uppara S, Dee D, et al. 2006. ERA-interim: new ECMWF reanalysis products from1989 onwards. ECMWF Newsletter,(110): 25-35
    Skamarock W, Dudhia J, Gill D O, et al. 2008. A Description of the Advanced Research WRF version 3. NCAR Technical Note TN-475+STR. Boulder: NCAR
    Slonosky V C, Mysak L A, Derome J. 1997. Linking Arctic sea ice and atmospheric circulation anomalies on interannual and decadal time scales. Atmosphere-Ocean, 35: 333-366
    Smith D, Dukowicz J K, Malone R C. 1992. Parallel ocean general circulation modeling. Physica D, 60: 38-61
    Tjernstrom M, Zagar M, Svensson G, et al. 2004. Modelling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary-Layer Meteorology, 117: 337-381
    Vihma T, Tisler P, Uotila P. 2012. Atmospheric forcing on the drift of Arctic sea ice in 1989-2009. Geophys Res Lett, 39: L02501 DOI: 10.1029/2011GL050118
    Warner J C, Sherwood C R, Arango H G, et al. 2005. Performance of four turbulence closure methods implemented using a generic length scale method. Ocean Modelling, 8: 81-113
    Wilkin J L, Arango H G, Haidvogel D B, et al. 2005. A regional ocean modeling system for the long-term ecosystem observatory. J Geophys Res, 110: C06S91 DOI: 10.1029/2003JC002218
    Wu B Y, Wang J, Walsh J E. 2006. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Climate, 19: 210-225
  • 加载中
计量
  • 文章访问数:  1851
  • HTML全文浏览量:  59
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-05
  • 修回日期:  2014-05-20

目录

    /

    返回文章
    返回