Ventilation of the Sulu Sea retrieved from historical data

LI Li GAN Zijun

LILi, GANZijun. 苏禄海的“通风”过程:历史数据分析[J]. 海洋学报英文版, 2014, 33(9): 1-11. doi: 10.1007/s13131-014-0517-3
引用本文: LILi, GANZijun. 苏禄海的“通风”过程:历史数据分析[J]. 海洋学报英文版, 2014, 33(9): 1-11. doi: 10.1007/s13131-014-0517-3
LI Li, GAN Zijun. Ventilation of the Sulu Sea retrieved from historical data[J]. Acta Oceanologica Sinica, 2014, 33(9): 1-11. doi: 10.1007/s13131-014-0517-3
Citation: LI Li, GAN Zijun. Ventilation of the Sulu Sea retrieved from historical data[J]. Acta Oceanologica Sinica, 2014, 33(9): 1-11. doi: 10.1007/s13131-014-0517-3

苏禄海的“通风”过程:历史数据分析

doi: 10.1007/s13131-014-0517-3
基金项目: The Chinese Ministry of Science and Technology through the National Basic Research Program under contract No. 2009CB421205.

Ventilation of the Sulu Sea retrieved from historical data

  • 摘要: 根据历史观测研究了苏禄海的“通风”(ventilation)过程,并论及其盆间交换。其结果表明在近表层,苏禄海的海水更新过程不仅经由民都洛海峡和锡布图海峡发生,而且有赖于太平洋经苏里高海峡和保和海入流和南海经巴拉巴可海峡的入流。这两支入流似乎终年持续,其输运恐难以忽略。在表层下方,副热带次表层水(SLW)的核心层位于约200 m处,可经民都洛海峡不受地形阻挡地进入苏禄海。另一方面,尽管深度足以令其通过,并无SLW经锡布图海峡流入的迹象。苏禄海最值得注意的通风过程是发生在200 m至大约1200 m间的中深度对流。该对流系民都洛-班乃海峡准稳态入流所驱动,并受其支配。由于侵入的水体来自南海之北太平洋中层水(NPIW)的上部,它的密度通常不足以使之沉到海底。因此,其对流过程一般仅及某一中间深度,导致一不起眼的盐度极小值层(约34.45)。在该层之下(从1200 m直至海底)则是均一的苏禄海深层水(SSDW),其盐度仅略高于极小值(约34.46)。有观测证据显示,在民都洛的入口附近,南海的水文条件季节差异显著,使之有些时候会提供给民都洛-班乃海峡入流以密度较高的海水。因此推测,SSDW乃来自民都洛-班乃海峡入流水体性质变化所导致的间歇性深对流。
  • Bingham F M, Lukas R. 1994. The Southward Intrusion of North Pacific Intermediate Water along the Mindanao Coast. J Phys Oceanogr, 24(1): 141-154
    Boyer T P, Antonov J I, Garcia H E, et al. 2006. World Ocean Database 2005. In: Levitus S, ed. NOAA Atlas NESDIS 60. Washington D C: U S Government Printing Office, 1-190
    Broecker W S, Patzert W C, Toggweiler J R, et al. 1986. Hydrography, chemistry, and radioisotopes in the Southeast Asian Basins. J Geophys Res, 91(C12): 14345-14354
    Chen C T A, Hou W P, Gamo T, et al. 2006. Carbonate-related parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Mar Chem, 99(1-4): 151-161
    Fang G H, Susanto D, Soesilo I, et al. 2005. A note on the South China Sea shallow interocean circulation. Adv Atmos Sci, 22(6): 946-954
    Fang G H, Wei Z X, Choi B H, et al. 2003. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model. Science in China Series D: Earth Sciences, 46(2): 149-161 Fine R A, Lukas R, Bingham F M, et al. 1994. The western equatorial Pacific: A water mass crossroads. J Geophys Res, 99(C12): 25063-25080
    Frische A, Quadfasel D. 1990. Hydrography of the Sulu Sea. In: Rangin C, Silver E, von Breymann M T, et al., eds. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 124. College Station, TX, 101-104
    Gamo T, Kato Y, Hasumoto H, et al. 2007. Geochemical implications for the mechanism of deep convection in a semi-closed tropical marginal basin: Sulu Sea. Deep-Sea Res Part II, 54(1-2): 4-13
    Gordon A L, Sprintall J, Ffield A. 2011. Regional oceanography of the Philippine Archipelago. Oceanography, 24(1):14-27
    Han W Q, Moore A M, Levin J, et al. 2009. Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004-2008. Dynamics of Atmospheres and Oceans, 47(1-3): 114-137
    Li L, Qu T D. 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. J Geophys Res, 111: C05017
    Li L, Xu J D, Jing C S, et al. 2003. Annual variation of sea surface height, dynamic topography and circulation in the South China Sea -A TOPEX/Poseidon satellite altimetry study. Science in China Series D: Earth Sciences, 46(2): 127-138
    Liu Q Y, Yang H J, Wang Q. 2000. Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea. Chin J Oceanol Limnol, 18(2): 104-109
    Lukas R, Firing E, Hacker P, et al. 1991. Observations of the Mindanao Current during the Western Equatorial Pacific Ocean Circulation study. J Geophys Res, 96(C4): 7089-7104
    Metzger E J, Hurlburt H E. 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res, 101(C5): 12331-12352
    Nozaki Y, Alibo D S, Amakawa H, et al. 1999. Dissolved rare earth elements and hydrography in the Sulu Sea. Geochimica et Cosmochimica Acta, 63(15): 2171-2181
    Ohlmann J C. 2011. Drifter observations of small-scale flows in the Philippine Archipelago. Oceanography, 24(1): 122-129
    Qu T D, Du Y, Meyers G, et al. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett, 32(24): L24609
    Qu T D, Du Y, Sasaki H. 2006. South China Sea throughflow: A heat and freshwater conveyor. Geophys Res Lett, 33(23): L23617
    Qu T D, Song Y T. 2009. Mindoro Strait and Sibutu Passage transports estimated from satellite data. Geophys Res Lett, 36(9): L09601
    Quadfasel D, Kudrass H, Frische A. 1990. Deep-water renewal by turbidity currents in the Sulu Sea. Nature, 348(6299): 320-322
    Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956-1962
    Sprintall J, Gordon A L, Flament P, et al. 2012. Observations of exchange between the South China Sea and the Sulu Sea. J Geophys Res, 117(C5): C05036
    Tessler Z D, Gordon A L, Pratt L J, et al. 2010. Transport and dynamics of the Panay Sill overflow in the Philippine Seas. J Phys Oceanogr, 40(12): 2679-2695
    Wu Risheng, Guo Xiaogang, Li Li. 2002. Winter hydrographic condition and circulation of the South China Sea in 1998. Acta Oceanologica Sinica (in Chinese), 24(Supp 1): 142-153
    Wyrtki K. 1961. Physical oceanography of the Southeast Asian waters, Naga Rep. 2. La Jolla, Calif.: Scripps Institution of Oceanography, 1-195
    Yaremchuk M, McCreary J Jr, Yu Z J, et al. 2009. The South China Sea throughflow retrieved from climatological data. J Phys Oceanogr, 39(3): 753-767
  • 加载中
计量
  • 文章访问数:  4884
  • HTML全文浏览量:  113
  • PDF下载量:  5463
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 修回日期:  2014-05-28

目录

    /

    返回文章
    返回