Laboratory simulation of the influence of geothermal heating on the interior ocean

ZHOU Shengqi QU Ling ZHAO Xiaozheng WAN Wei

ZHOUShengqi, QULing, ZHAOXiaozheng, WANWei. 地热对海洋影响的实验室模拟[J]. 海洋学报英文版, 2014, 33(9): 25-31. doi: 10.1007/s13131-014-0512-8
引用本文: ZHOUShengqi, QULing, ZHAOXiaozheng, WANWei. 地热对海洋影响的实验室模拟[J]. 海洋学报英文版, 2014, 33(9): 25-31. doi: 10.1007/s13131-014-0512-8
ZHOU Shengqi, QU Ling, ZHAO Xiaozheng, WAN Wei. Laboratory simulation of the influence of geothermal heating on the interior ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 25-31. doi: 10.1007/s13131-014-0512-8
Citation: ZHOU Shengqi, QU Ling, ZHAO Xiaozheng, WAN Wei. Laboratory simulation of the influence of geothermal heating on the interior ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 25-31. doi: 10.1007/s13131-014-0512-8

地热对海洋影响的实验室模拟

doi: 10.1007/s13131-014-0512-8
基金项目: The National Natural Science Foundation (NSF) of China under contract Nos 41176027 and 11072253; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11030302; the State Key Laboratory of Tropical Oceanography (LTO) grant, South China Sea Institute of Oceanography, Chinese Academy of Sciences, under contract No. LTOZZ1304.

Laboratory simulation of the influence of geothermal heating on the interior ocean

  • 摘要: 通过室内实验和标度律分析的方法,评估了地热对海洋环流的影响。对实验室内形成的充分发展大尺度环流,在其底部加入小的热通量扰动δF/F,测量环流的流动和热力学参量变化。实验结果表明涡扩散系数,KT环流速度V和底边界温度Tb的变化与所加热通量δF/F无关,但依赖于热通量扰动 的变化。同时在较低和极端高湍流度的湍动热对流和水平对流三种不同流动环境下,分析了环流的传热和流动标度律。室内实验和标度律分析两种方法的结果表明在δF/F=2%的情况下,涡扩散系数δKT和速度δV/V的相对变化量分别接近0.5% 和 0.75%. 这意味着小热通量扰动对整体环流的影响很小。但是在δF/F=2%的情况下,底边界温度δKT/△T的相对变化量接近1.5%,这会对局域环境有很大影响。当本实验的研究规律应用于海洋,可帮助理解海底地热对大洋环流的作用。推测海底地热对大洋环流的影响很小,湍流混合和体积通量的变化小于1%。但是地热对于局部海洋的影响不容忽视。例如,有没有地热,海底温度会有0.5度的变化,这么大的变化会对海底边界层的物理环境有显著的影响。
  • Adcroft A, Scott J R, Marotzke J. 2001. Impact of geothermal heating on the global ocean circulation. Geophysical Research Letters, 28: 1735-1738, doi: 10.1029/2000GL012182
    Adkins J F, Ingersoll A P, Pasquero C. 2005. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quaternary Science Reviews, 24: 581-594, doi: 10.1016/j.quascirev.2004.11.005
    Ahlers G, Grossmann S, Lohse D. 2009. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 81: 503-537, doi: 10.1103/RevModPhys.81.503
    Brown E, Nikolaenko A, Funfschilling D, et al. 2005. Heat transport in turbulent Rayleigh-Bénard convection: effect of finite topand bottom-plate conductivities. Physics of Fluids, 17: 075108, doi: 10.1063/1.1964987
    Emile-Geay J, Madec G. 2009. Geothermal heating, diapycnal mixing, and the abyssal circulation. Ocean Science, 5: 203-217, doi: 10.5194/os-5-203-2009
    Gade H G, Gustafsson K E. 2004. Application of classical thermodynamical principles to the study of the oceanic overturning circulation. Tellus: Series A. Dynamic Meteorology and Oceanography, 56: 371-386, doi: 10.1111/j.1600-0870.2004.00062.x
    Goldstein R J, Chiang H D, See D L. 1990. High-Rayleigh-number convection in a horizontal enclosure. Journal of Fluid Mechanics, 213: 111-126, doi: 10.1017/S0022112090002245
    Grossmann S, Lohse D. 2000. Scaling in thermal convection: a unifying theory. Journal of Fluid Mechanics, 407: 27-56, doi: 10.1017/S0022112099007545
    Hasterok D, Chapman D S, Davis E E. 2011. Oceanic heat flow: implications for global heat loss. Earth Planetary Science Letters, 311: 386-395, doi: 10.1016/j.epsl.2011.09.044
    Hofmann M, Maqueda Morales M A. 2009. Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution. Geophysical Research Letters, 36: L03603, doi: 10.1029/2008GL036078
    Huang R X. 1999. Mixing and energetics of the oceanic thermohaline circulation. Journal of Physical Oceanography, 29: 727-746, doi:10.1175/1520-0485(1999)029<0727: MAEOTO>2.0.CO; 2 Hughes G O, Griffiths R W. 2008. Horizontal convection. Annual Review of Fluid Mechanics, 40: 185-208, doi:10.1146/annurev. fluid.40.111406.102148
    Houghton J T, Filho L G M, Harris B A, et al. 1996. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press Joyce T M, Warren B A, Talley L D. 1986. The geothermal heating of the abyssal subarctic Pacific Ocean. Deep Sea Research: Part A. Oceanographic Research Papers, 33: 1003-1015, doi: 10.1016/0198-0149(86)90026-9
    Kraichnan R H. 1962. Turbulent thermal convection at arbitrary Prandtl number. Physics of Fluids, 5: 1374, doi: 10.1063/1.1706533
    Lohse D, Xia Keqing. 2010. Small-scale properties of turbulent Rayleigh-Bénard convection. Annual Review of Fluid Mechanics, 42: 335-364, doi: 10.1146/annurev.fluid.010908.165152
    Macdonald A M, Wunsch C. 1996. An estimate of global ocean circulation and heat fluxes. Nature, 382: 436-439, doi:10.1038/382436a0 Malkus M V R. 1954. The heat transport and spectrum of thermal turbulence. Proceedings of the Royal Society of London: Series A, 225: 196-212, doi:10.1098/rspa.1954.0197
    Mullarney J C, Griffiths R W, Hughes G O. 2004. Convection driven by differential heating at a horizontal boundary. Journal of Fluid Mechanics, 516: 181-209, doi: 10.1017/S0022112004000485
    Mullarney J C, Griffiths R W, Hughes G O. 2006. The effects of geothermal heating on the ocean overturning circulation. Geophysical Research Letters, 33: L02607, doi: 10.1029/2005GL024956
    Munk W, Wunsch C. 1998. Abyssal recipes: II. Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45: 1977-2010, doi: 10.1016/S0967-0637(98)00070-3
    Nikolaenko A, Brown E, Funfschilling D, et al. 2005. Heat transport by turbulent Rayleigh-Bénard convection in cylindrical cells with aspect ratio one and less. Journal of Fluid Mechanics, 523: 251-260, doi: 10.1017/S0022112004002289
    Rossby H T. 1965. On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Research and Oceanographic Abstracts, 12: 9-16, doi: 10.1016/0011-7471(65)91336-7
    Sano M, Wu Xiaozhong, Libchaber A. 1989. Turbulence in helium-gas free-convection. Physical Review: A, 40: 6421-6430, doi: 10.1103/PhysRevA.40.6421
    Scott J R, Marotzke J, Adcroft A. 2001. Geothermal heating and its influence on the meridional overturning circulation. Journal of Geophysical Research, 106: 31141-31154, doi:10.1029/2000JC000532 Siggia E D. 1994. High Rayleigh number convection. Annual Review of Fluid Mechanics, 26: 137-168, doi:10.1146/annurev. fl.26.010194.001033
    Spiegel E A. 1971. Convection in stars I. Basic Boussinesq convection. Annual Review of Astronomy and Astrophysics, 9: 323-352, doi: 10.1146/annurev.aa.09.090171.001543
    Stein C, Stein S. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. Journal of Geophysical Research, 99: 3081-3095, doi: 10.1029/93JB02222
    Tailleux R, Rouleau L. 2010. The effect of mechanical stirring on horizontal convection. Tellus: A. Dynamic Meteorology and Oceanography, 62: 138-153, doi: 10.1111/j.1600-0870.2009.00426.x
    Urakawa L, Hasumi H. 2009. A remote effect of geothermal heat on the global thermohaline circulation. Journal of Geophysical Research, 114: C07016, doi: 10.1029/2008JC005192
    Wang Wei, Huang Ruixin. 2005. An experimental study on thermal convection driven by horizontal differential heating. Journal of Fluid Mechanics, 540: 49-73, doi: 10.1017/S002211200500577X
    Xia Keqing, Lam S, Zhou Shengqi. 2002. Heat-flux measurements in high-Prandtl-number Rayleigh-Bénard convection. Physical Review Letters, 88: 064501, doi: 10.1103/PhysRevLett.88.064501
    Xia Keqing, Sun Chao, Zhou Shengqi. 2003. Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Physical Review: E, 68: 066303, doi: 10.1103/Phys-RevE.68.066303
    Zhou Shengqi, Sun Chao, Xia Keqing. 2007. Measured oscillations of the velocity and temperature fields in turbulent Rayleigh-Bénard convection in a rectangular cell. Physical Review: E, 76: 036301, doi: 10.1103/PhysRevE.76.036301
  • 加载中
计量
  • 文章访问数:  1498
  • HTML全文浏览量:  62
  • PDF下载量:  1508
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-05
  • 修回日期:  2014-01-23

目录

    /

    返回文章
    返回