A numerical estimation of the impact of Stokes drift on upper ocean temperature

ZHANG Xiaoshuang WANG Zhifeng WANG Bin WU Kejian HAN Guijun LI Wei

ZHANGXiaoshuang, WANGZhifeng, WANGBin, WUKejian, HANGuijun, LIWei. Stokes漂对上层海洋温度变化影响的数值研究[J]. 海洋学报英文版, 2014, 33(7): 48-55. doi: 10.1007/s13131-014-0507-5
引用本文: ZHANGXiaoshuang, WANGZhifeng, WANGBin, WUKejian, HANGuijun, LIWei. Stokes漂对上层海洋温度变化影响的数值研究[J]. 海洋学报英文版, 2014, 33(7): 48-55. doi: 10.1007/s13131-014-0507-5
ZHANG Xiaoshuang, WANG Zhifeng, WANG Bin, WU Kejian, HAN Guijun, LI Wei. A numerical estimation of the impact of Stokes drift on upper ocean temperature[J]. Acta Oceanologica Sinica, 2014, 33(7): 48-55. doi: 10.1007/s13131-014-0507-5
Citation: ZHANG Xiaoshuang, WANG Zhifeng, WANG Bin, WU Kejian, HAN Guijun, LI Wei. A numerical estimation of the impact of Stokes drift on upper ocean temperature[J]. Acta Oceanologica Sinica, 2014, 33(7): 48-55. doi: 10.1007/s13131-014-0507-5

Stokes漂对上层海洋温度变化影响的数值研究

doi: 10.1007/s13131-014-0507-5
基金项目: The National Basic Research Program of China under contract No. 2013CB430304;the National High-Tech R&D Program of China under contract No. 2013AA09A505;the National Natural Science Foundation and Science and Technology Support Key Project Plan of China under contract No. 2011BAC03B02;the National Natural Science Foundation of China under contract Nos 41376013, 41376015, 41306006 and 41206178;the open Fundation of the key layboratory of Digital Ocean under contract No. KLDO 201406.

A numerical estimation of the impact of Stokes drift on upper ocean temperature

  • 摘要: 海表面波浪在上层海洋能够诱导产生Stokes漂流,其对上层海洋温度场存在平流热输送贡献,而已有的混合层温度变化方程忽略了Stokes漂流的影响,仅考虑了上层海洋平均流的平流热输送贡献,因此,利用已有的混合层温度变化方程对海洋温度场进行模拟存在一定的缺陷。本文将Stokes漂流所诱导的平流热输送项引入混合层温度变化方程中,利用改进后的混合层温度变化方程分析Stokes漂流对混合层温度变化影响的时空分布特征,以及影响的相对重要性。根据改进后的混合层温度变化方程进行量纲分析,结果表明,在南北半球中高纬度区域浪致平流热输送项的贡献比较显著,能够达到与平均流诱导的平流热输送项和热通量项同等量级。定量计算的结果表明,对于混合层温度变化,Stokes漂流与平均流的贡献具有同等的重要性,并且,引入Stokes漂流诱导的平流热输送项后,整体混合层温度变化率的改变是显著的。虽然浪致平流热输送项并非混合层温度变化方程的主导项,但是其作用是不可忽视的,其对上层海洋温度场的模拟和气候研究具有关键性的影响。因此,在混合层温度变化方程中考虑波浪的影响是必要的。
  • Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic - Cartesian coordinates. Ocean Modeling, 4(1): 55-88
    Cavaleri L, Malanotte-Rizzoli P. 1981. Wind wave prediction in shallow water: theory and applications. Journal of Geophysical Research, 86: 10961-10975
    Chalikov D, Belevich M Y. 1993. One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorology, 63: 65-96
    Chassignet E P, Smith L T, Halliwell G R, et al. 2003. North Atlantic simulations with the hybrid coordinate ocean model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity. Journal of Physical Oceanography, 33: 2504-2526
    Chen G, Chapron B, Ezraty R, et al. 2002. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatter meter. Journal of Atmospheric and Oceanic Technology, 19: 1849-1859
    Deng Zengan, Xie Lian, Liu Bin, et al. 2009. Coupling winds to ocean surface currents over the global ocean. Ocean Modelling, 29: 261-268
    Jenkins A D. 1986. A theory of steady and variable wind-and wave-induced currents. Journal of Physical Oceanography, 16: 1370-1377
    Kenyon K E. 1970. Stokes transport. Jounal of Geophysical Research, 75: 1133-1135
    Lane E M. 2006. Wave-current interaction: a comparison of radiationstress and vortex-force representations. Journal of Physical Oceanography, 37: 1122-1141
    Large W G, McWilliams J C, Doney S C. 1994. Ocean vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32: 363-403
    Li Shuang, Song Jinbao, Sun Qun. 2008. Effect of Stokes drift on upper ocean mixing. Acta Oceanologica Sinica, 27: 11-20
    Longuet-Higgins M S. 1953. Mass transport in water waves. Philosophical Transaction of the Royal Society, A245: 535-581
    Longuet-Higgins M S. 1960. Mass transport in the boundary layer at a free oscillating surface. Journal of Fluid Mechanics, 8: 293-306
    McWilliams J C, Restrepo J M. 1999.The wave-driven ocean circulation. Journal of Physical Oceanography, 29: 2523-2540
    Pillips O M. 1977. The dynamics of the upper ocean. Cambridge: Cambridge University press, 336
    Qiao Fangli, Yang Yongzeng, Xia Changshui, et al. 2008. The role of surface waves in the Ocean mixed layer. Acta Oceanologica Sinica, 27(3): 30-37
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: Distribution and application in a global ocean circulation model. Geophysical Research Letters, 31: L11303
    Stevenson J W, Niiler P P. 1983. Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. Journal of Physical Oceanography, 13: 1894-1907
    Tolmas H L. 2009. User manual and system documentation of WAVE WATCH Ⅲ TM version 3.14. Technical note MMAB contribution Weber J E. 1983. Steady wind-and wave-induced currents in the upper ocean. Journal of Physical Oceanography, 13: 524-530
    Wu Kejian, Liu Bin. 2008. Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current. Journal of Geophysical Research, 113: C10002, doi10.1029/2007JC004579
    Wu Kejian, Yang Zhongliang, Liu Bin et al. 2008b. Wave Energy Input into the Ekman Layer. Science in China Series D: Earth Sciences (in Chinese), 51(1): 134-141
    Zhang Jie, Wang Weili, Guan Changlong. 2011. Analysis of the global swell distributions using ECMWF re-analysis wind wave data. Journal of Ocean University of China, 10(4): 325-330
    Zhang Xiaoshuang, Wu Kejian. 2012. The influence of Stokes drift on the alteration ration of temperature in the oceanic mixed layer. Journal of Ocean University of China, 42(9): 1-6
  • 加载中
计量
  • 文章访问数:  1395
  • HTML全文浏览量:  38
  • PDF下载量:  1378
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-26
  • 修回日期:  2014-01-17

目录

    /

    返回文章
    返回