Numerical studies on the degeneration of internal waves induced by an initial tilted pycnocline

LIN Zhenhua SONG Jinbao

LINZhenhua, SONGJinbao. 初始倾斜跃层所致内波的数值研究[J]. 海洋学报英文版, 2014, 33(7): 27-39. doi: 10.1007/s13131-014-0503-9
引用本文: LINZhenhua, SONGJinbao. 初始倾斜跃层所致内波的数值研究[J]. 海洋学报英文版, 2014, 33(7): 27-39. doi: 10.1007/s13131-014-0503-9
LIN Zhenhua, SONG Jinbao. Numerical studies on the degeneration of internal waves induced by an initial tilted pycnocline[J]. Acta Oceanologica Sinica, 2014, 33(7): 27-39. doi: 10.1007/s13131-014-0503-9
Citation: LIN Zhenhua, SONG Jinbao. Numerical studies on the degeneration of internal waves induced by an initial tilted pycnocline[J]. Acta Oceanologica Sinica, 2014, 33(7): 27-39. doi: 10.1007/s13131-014-0503-9

初始倾斜跃层所致内波的数值研究

doi: 10.1007/s13131-014-0503-9
基金项目: The Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No. 41121064;the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11010104;the Open Fund of State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences under contract No. LTO1104.

Numerical studies on the degeneration of internal waves induced by an initial tilted pycnocline

  • 摘要: 在外界风应力强迫作用形成的倾斜跃层在重力的作用下有恢复到水平的趋势,当外力作用较弱时候,层结流体界面为较弱的往复振荡,而当外力作用较强时,在这个过程中会生成内涌和内波,这提供了一种将能量从较大尺度向较小尺度传递的媒介。在本文中,我们建立了一个包含湍流封闭模型的二维非静力模型,来扩展前期实验研究的相关结果。数值模型可以用来得到前期实验中观测到的关键现象,模拟结果可以进一步提供前期实验中无法得到的各个物理量的定量信息,从而可以帮助我们更好理解这些过程。通过敏感性试验我们可以更好理解非线性在这个过程中的作用。垂直避免可以较好反射入射波,而倾斜边界处内波则发生较强烈的破碎和能量耗散过程。我们可以利用数值模型的结果研究整个关注区域能量随时间的变化趋势,分析结果表明,在第一组内波破碎的过程中大约有20%的初始有效重力位能损失。在文中我们也就一些数值方法如网格的拓扑结构和初始化方法作了相关讨论。
  • Aghsaee P, Boegman L, Lamb K G. 2010. Breaking of shoaling internal solitary waves. J Fluid Mech, 659: 289-317
    Boegman L, Imberger J, Ivey G N, et al. 2003. High-frequency internal waves in large stratified lakes. Limnol Oceanogr, 48: 895-919
    Boegman L, Ivey G N, Imberger J. 2005a. The energetics of large-scale internal wave degeneration in lakes. J Fluid Mech, 531: 159-180
    Boegman L, Ivey G N, Imberger J. 2005b. The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr, 50: 1620-1637
    Boegman L, Ivey G N. 2009. Flow separation and resuspension beneath shoaling nonlinear internal waves. J Geophys Res, 114: C02018
    Botelho, D, Imberger J, Dallimore C, et al. 2009. A hydrostatic/non-hydrostatic grid-switching strategy for computing high-frequency, high wave number motions embedded in geophysical flows. Environ Modell Softw, 24(4): 473-488
    Cai Shuqun, Xie Jieshuo, He Jianling. 2012. An overview of internal solitary waves in the South China Sea. Surveys in Geophysics, 33(5): 927-943
    Farmer D M. 1978. Observations of long nonlinear internal waves in a lake. J Phys Oceanogr, 8: 63-73
    Fricker P D, Nepf H M. 2000. Bathymetry, stratification, and internal seiche structure. J Geophys Res, 105: 14237-14251
    Fringer O B, Street R L. 2003. The dynamics of breaking progressive interfacial waves. J Fluid Mech, 494: 319-353
    Heaps N S, Ramsbottom A E. 1966. Wind effects on the water in a narrow two-layered lake. Philos T R Soc: A, 259: 391-430
    Helfrich K R. 1992. Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech, 243: 133-154
    Horn D A, Imberger J, Ivey G N. 2001. The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech, 434: 181-207
    Horn D A, Imberger J, Ivey G N, et al. 2002. A weakly nonlinear model of long internal waves in closed basins. J Fluid Mech, 467: 269-287
    Horn W, Mortimer C H, Schwab D J. 1986. Wind-induced internal seiches in Lake Zurich observed and modeled. Limnol Oceanogr, 31: 1232-1254
    Hunkins K, Fliegel M. 1973. Internal undular surges in Seneca Lake: a natural occurrence of solitons. J Geophys Res, 78: 539-548
    Jasak H. 1996. Error analysis and estimation for the finite volume method with applications to fluid flows [dissertation]. London: Imperial College London, University of London
    Lamb K G, Boegman L, Ivey G N. 2005. Numerical simulations of shoaling internal solitary waves in tilting tank experiments. In: Folkard, Jones I, Eds. Proceedings 9th European Workshop on Physical Processes in Natural Waters Lancaster: Lancaster University, 31-38
    Lamb K G, Nguyen V T. 2009. Calculating energy flux in internal solitary waves with an application to reflectance. J Phys Oceanogr, 39: 559-580
    Lemmin U. 1987. The structure and dynamics of internal waves in Baldeggersee. Limnol Oceanogr, 32: 43-61
    Michallet H, Ivey G N. 1999. Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res, 104: 13467-13477
    Mortimer C H. 1952. Water movements in lakes during summer stratification: evidence from the distribution of temperature in Windermere. Philos T R Soc: B, 236: 355-398
    Monismith S. 1986. An experimental study of the upwelling response of stratified reservoirs to surface shear stress. J Fluid Mech, 171: 407-439
    Sakai T, Redekopp L G. 2010. A parametric study of the generation and degeneration of wind-forced long internal waves in narrow lakes. J Fluid Mech, 645: 315
    Spigel R H, Imberger J. 1980. The classification of mixed-layer dynamics of lakes of small to medium size. J Phys Oceanogr, 10: 1104-1121
    Stashchuk N, Vlasenko V, Hutter K. 2005. Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Proc Geoph, 12: 955-964
    Stevens C, Lawrence G, Hamblin P, et al. 1996. Wind forcing of internal waves in a long narrow stratified lake. Dynam Atmos Oceans, 24: 41-50
    Stevens C, Lawrence G. 1997. Estimation of wind-forced internal seiche amplitudes in lakes and reservoirs, with data from British Columbia. Canada Aquat Sci, 59: 115-134
    Thompson R O R Y, Imberger J. 1980. Response of a numerical model of a stratified lake to wind stress. In: Carstens T, McClimans T, eds. Second International Symposium on Stratified Flows. Trondheim, Norway: IAHR, 562-570
    Thorpe S A. 1971. Asymmetry of the internal seiche in Loch Ness. Nature, 231: 306-308
    Thorpe S A, Hall A, Crofts I. 1972. The internal surge in Loch Ness. Nature, 237: 96-98
    Thorpe S A. 1974. Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness? J Fluid Mech, 63: 509-527 Venayagamoorthy S K, Fringer O B. 2007. On the formation and propagation of nonlinear internal boluses across a shelf break. J Fluid Mech, 577: 137-159
    Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Model, 40(1): 72-86
    Weller H G, Tabor G, Jasak H, et al. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys, 12: 620-631
    Wiegand R C, Carmack E C. 1986. The climatology of internal waves in a deep temperate lake. J Geophys Res, 91: 3951-3958
    Wu J. 1977. A note on the slope of a density interface between two stably stratified fluids under wind. J Fluid Mech, 81: 335-339
  • 加载中
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  27
  • PDF下载量:  1148
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-28
  • 修回日期:  2013-11-26

目录

    /

    返回文章
    返回