A biooptical model of retrieving petroleum concentration in seawater

HUANG Miaofen SONG Qingjun XING Xufeng ZHAO Zulong

HUANGMiaofen, SONGQingjun, XINGXufeng, ZHAOZulong. 水体石油类物质生物-光学遥感反演模型[J]. 海洋学报英文版, 2014, 33(5): 81-85. doi: 10.1007/s13131-014-0478-6
引用本文: HUANGMiaofen, SONGQingjun, XINGXufeng, ZHAOZulong. 水体石油类物质生物-光学遥感反演模型[J]. 海洋学报英文版, 2014, 33(5): 81-85. doi: 10.1007/s13131-014-0478-6
HUANG Miaofen, SONG Qingjun, XING Xufeng, ZHAO Zulong. A biooptical model of retrieving petroleum concentration in seawater[J]. Acta Oceanologica Sinica, 2014, 33(5): 81-85. doi: 10.1007/s13131-014-0478-6
Citation: HUANG Miaofen, SONG Qingjun, XING Xufeng, ZHAO Zulong. A biooptical model of retrieving petroleum concentration in seawater[J]. Acta Oceanologica Sinica, 2014, 33(5): 81-85. doi: 10.1007/s13131-014-0478-6

水体石油类物质生物-光学遥感反演模型

doi: 10.1007/s13131-014-0478-6
基金项目: The National Natural Science Foundation of China under contract No. 41271364; the Key Projects in the National Science and Technology Pillar Program of China under contract No. 2012BAH32B01-4; the Liaoning Province Excellent Talents in Universities of China under contract No. LR2011019.

A biooptical model of retrieving petroleum concentration in seawater

  • 摘要: 以辐射传输理论为基础的生物-光学遥感模型主要原理是将常规水色因子(叶绿素、悬浮物和黄色物质等)的固有光学特性(吸收系数和后向散射系数)与表观光学特性(遥感反射率)联系起来,然后根据多光谱遥感数据源同时反演出各水色因子的浓度。目前该模型在提取二类水体水色要素浓度(叶绿素、悬浮泥沙和黄色物质等)方面得到了相对广泛的应用。利用大量现场测定的水质数据和对应水样的表观光学特性及固有光学特性,对石油物质固有光学特性进行参数化;充分利用现有的水色因子固有光学特性的参数模型,将石油物质作为一种新的水色因子引入生物-光学模型中,建立了水体石油类物质浓度遥感提取模型。结合2008年5月、2009年8月和2010年6月在辽东湾测量的数据,利用所建立的生物-光学模型中提取海水中的石油类浓度,结果显示该模型具有较高的反演精度,这表明有望利用遥感技术估算海水中石油含量。
  • Bricaud A, Babin M, Morel A, et al. 1995. Variability in the chlorophyllspecific absorption coefficients of natural phytoplankton: analysis and parameterization. J Geophy Res, 100: 13321-13332
    Bricaud A, Morel A , Prieur L. 1981. Absoptin by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Linmal Oceanogr, 26(1): 43-53
    Bowers D G, Evans D , Thomas D N. 2004. Interpreting the colour of an estuary . Estuarine. Coastal and Shelf Science, 59: 13-20
    Carder K L, Chen F R, Lee Z P, et al. 1999. Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with biooptical domains based on nitrate-depletion temperatures. Journal of Geophysical Research, 104(C3): 5403- 5421
    Fischer J, Fell F. 1999. Simulation of MERIS measurements above selected ocean waters. Int J Remote Sensing, 20(9): 1787-1807
    Gordon H R, Brown O B, Evans R H, et al. 1988. A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93(9): 10909-10924
    Huang Miaofen, Song Qingjun, Tang Junwu, et al. 2009. Analysis of backscattering properties of petroleum polluted water. Acta Oceanologica Sinica (in Chinese), 31(3): 12-20
    Huang Miaofen, Tang Junwu, Song Qingjun. 2010. Analysis of petroleum- polluted water absorption spectral properties. Journal of Remote Sensing (in Chinese), 14(1): 140-156
    Król T, Stelmaszewski A, Freda W. 2006 Variability in the optical properties of a crude oil-seawater emulsion. Oceanologia, 48(S): 203-211
    Lee Z P, Carder K L, Hawes S H, et al. 1994. A model or interpretation of hyperspectral remote-sensing reflectance. Applied Optics, 33: 5721-5732
    Lee Z P, Carder K L, Robert A. 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27): 5755-5772
    Mobley C D. 1994. Light and Water: Radiative Transfer in Nature Water. San Diego: Academic Press, 592
    Morel A, Gentili B. 1991. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Applied Optics, 30: 4427-4438
    Oishi T, Takahashi Y, Tanaka A, et al. 2002. Relation between the backward as well as total scattering coefficients and the volume scattering functions by cultured phytoplankton. J School Mar Sci Technol-Tokai Univ, 53: 1-15
    Otremba Z, Król T. 2002. Modeling of the crude oil suspension impact on inherent optical parameters of coastal Seawater polish. Journal of Environmental Studies, 11(4): 407-411
    Roesler C S, Perry M J, Carder K L. 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol Oceanogr, 34: 1510-1523
    Sathyendranath S, Prieur L, Morel A. 1989. Three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. Int J Remote Sensing, 10: 1373-1394
    Song Qingjun, Huang Miaofen, Tang Junwu, et al. 2010. Influence of petroleum concentration in water on spectral backscattering coefficien. spectroscopy and spectral analysis (in Chinese), 30(9): 1932-1938
    Song Qingjun, TANG Junwu. 2006. The study on the scattering properties in the Huanghai Sea and East China Sea. Acta Oceanologica Sinica (in Chinese), 28(4): 56-63
    Stramski D, Piskozub J. 2003. Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations. Applied Optics, 42(18): 3634-3646
    Yang Wei, Matsushita Bunkei, Chen Jin. 2009. Deriving inherent optical properties through training samples with known concentration of water constituents and reflectance spectra. Journal of Lake Science (in Chinese), 21: 207-214
    Zhang Y, van Dijk MA, Liu M, et al. 2009. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Research, 43: 4685-4697
  • 加载中
计量
  • 文章访问数:  1376
  • HTML全文浏览量:  21
  • PDF下载量:  1488
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-07
  • 修回日期:  2013-12-16

目录

    /

    返回文章
    返回