On the Fourier approximation method for steady water waves

ZHAO Hongjun SONG Zhiyao LI Ling KONG Jun

ZHAOHongjun, SONGZhiyao, LILing, KONGJun. 稳恒水波的Fourier近似解研究[J]. 海洋学报英文版, 2014, 33(5): 37-47. doi: 10.1007/s13131-014-0470-1
引用本文: ZHAOHongjun, SONGZhiyao, LILing, KONGJun. 稳恒水波的Fourier近似解研究[J]. 海洋学报英文版, 2014, 33(5): 37-47. doi: 10.1007/s13131-014-0470-1
ZHAO Hongjun, SONG Zhiyao, LI Ling, KONG Jun. On the Fourier approximation method for steady water waves[J]. Acta Oceanologica Sinica, 2014, 33(5): 37-47. doi: 10.1007/s13131-014-0470-1
Citation: ZHAO Hongjun, SONG Zhiyao, LI Ling, KONG Jun. On the Fourier approximation method for steady water waves[J]. Acta Oceanologica Sinica, 2014, 33(5): 37-47. doi: 10.1007/s13131-014-0470-1

稳恒水波的Fourier近似解研究

doi: 10.1007/s13131-014-0470-1
基金项目: The Jiangsu Province Natural Science Foundation for the Young Scholar under contract No. BK20130827; the Fundamental Research Funds for the Central Universities of China under contract No. 2010B02614; the National Natural Science Foundation of China under contract Nos 41076008 and 51009059; the Priority Academic Program Development of Jiangsu Higher Education Institutions.

On the Fourier approximation method for steady water waves

  • 摘要: 该文基于势函数理论,通过对波面和速度势的Fourier近似,由自由面运动学和动力学边界条件,构造了各项Fourier系数满足的非线性代数方程,进一步采用引入松弛系数的Newtion迭代法,对各项Fourier系数进行了数值求解,从而构造了物理空间的稳恒水波的Fourier近似数值解法。对不同水深和非线性的稳恒水波进行了数值计算,并研究了不同波动特征量随波陡的变化,结果显示稳恒水波的超高和跌落均是随波陡非单调变化的变量,且波面的Fourier谱明显宽于速度势。基于后一现象,通过对波面和速度势采用不同截断项数的Fourier近似(波面Fourier级数的截断项数高于速度势),进一步对本文数值解法进行了改进,数值实验表明,改进方法有效,可显著降低自由面边界条件的误差。
  • Chaplin J R. 1980. Developments of stream-function wave theory. Coastal Eng, 3: 179-205
    Chappelear J E. 1961. Direct numerical calculation of wave properties. J Geophys Res, 66(2): 501-508
    Clamond D. 1999. Steady finite-amplitude waves on a horizontal seabed of arbitrary depth. J Fluid Mech, 398: 45-60
    Clamond D. 2003. Cnoidal-type surface waves in deep water. J Fluid Mech, 489: 101-120
    Cokelet E D. 1977. Steep gravity waves in water of arbitrary uniform depth. Philos Trans R Soc London: Ser A, 286: 183-230
    Dalrymple R A, Solana P. 1986. Nonuniqueness in stream function wave theory. J Warway Port Coast and Oc Eng, 112(2): 333-337
    De S C. 1955. Contributions to the theory of Stokes waves. Proc Camb Phil Soc, 51: 713-736
    Dean R G. 1965. Stream function representation of nonlinear ocean waves. J Geophys Res, 70(18): 4561-4572
    Dean R G. 1968. Breaking wave criteria — A study employing a numerical wave theory. Proc 11th Conf Coast Eng. New Nork: ASCE, 108-123.
    Fenton J D. 1985. A fifth-order Stokes theory for steady waves. J Warway Port Coast and Oc Eng, 111(2): 216-234
    Fenton J D. 1988. The numerical solution of steady water wave problems. Computers & Geosciences, 14(3): 357-368
    Fenton J D. 1998. The cnoidal theory of water waves, in: Herbich, J B, Eds. Developments of Offshore Engineering, Houston: Gulf Professional Publishing, 1-34
    Isobe M, Nishimura H, Horikawa K. 1978. Expressions of perturbation solutions for conservative waves by using wave height. Proc 33rd Annu Conf of JSCE (in Japanese), 760-761.
    Reprinted in Horikawa K. 1988. Nearshore Dynamics and Coastal Processes, Tokyo: University of Tokyo Press, 28-29
    Jonsson I G, Arneborg L. 1995. Energy properties and shoaling of higher- order Stokes waves on a current. Ocean Eng, 22(8): 819-857
    Laitone E V. 1962. Limiting conditions for cnoidal and Stokes waves. J Geophys Res, 67(4): 1555-1564
    Le Méhauté B, Divoky D, Lin A. 1968. Shallow water waves — A comparison of theories and experiments. Proc 11th Conf Coast Eng. New Nork: ASCE, 86-107
    Liao Shijun, Cheung K. 2003. Homotopy analysis of nonlinear progressive waves in deep water. J Eng Math, 45(2): 105-116
    Longuet-Higgins M S. 1975. Integral properties of periodic gravity waves of finite amplitude. Proc R Soc, London: Ser A, 342(1629): 157-174
    Lukomsky V P, Gandzha I S. 2003. Fractional Fourier approximations for potential gravity waves on deep water. Nonlinear Proc Geoph, 10(6): 599-614
    Lukomsky V P, Gandzha I S, Lukomsky D V. 2002. Computational analysis of the almost-highest waves on deep water. Comput Phys Commun, 147: 548-551
    Lundgren H. 1963. Wave trust and wave energy level. Proc 10th Congr Int Assoc Hydraul Res. Delft: IAHR, 147-151
    Rienecker M M, Fenton J D. 1981. A Fourier approximation method for steady water waves. J Fluid Mech, 104: 119-137
    Schwartz L W. 1974. Computer extension and analytic continuation of Stokes' expansion for gravity waves. J Fluid Mech, 62: 553-578
    Skjelbreia L, Hendrickson J. 1960. Fifth order gravity wave theory. Proc 7th Conf Coast Eng. California: Council on Wave Res, The Eng Found, 184-196
    Song Zhiyao, Zhao Hongjun, Li Ling, et al. 2013. On the universal third order Stokes wave solution. Sci China: Earth Sci, 56(1): 102-114
    Stokes G G. 1847. On the theory of oscillation waves. Trans Camb Phil Soc, 8: 441-455
    Stokes G G. 1880. Appendices and supplement to a paper on the theory of oscillation waves. Mathematical and Physical Papers, Vol. 1. Cambridge, UK: Cambridge University Press, 314-326
    Tanaka M. 1983. The stability of steep gravity waves. J Phys Soc Japan, 52(9): 3047-3055
    Tao Longbin, Song Hao, Chakrabarti S. 2007. Nonlinear progressive waves in water of finite depth—An analytic approximation. Coastal Eng, 54: 825-834
    Tsuchiya Y, Yasuda T. 1981. A new approach to Stokes wave theory. Bull Disast Prev Res Inst, 31(1): 17-34
  • 加载中
计量
  • 文章访问数:  1635
  • HTML全文浏览量:  67
  • PDF下载量:  1458
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-10
  • 修回日期:  2013-10-18

目录

    /

    返回文章
    返回